Bruce S. Dien, Nancy N. Nichols, Xin Li, and Michael A. Cotta **An overview of recent advances in lignocellulose to ethanol conversion technology**

National Center for
Agricultural Utilization

Research
MIDWEST AREA
AGRICULTURAL RESEARCH SERVICE MIDWEST AREA RESEARCH SERVICE

Research

Potential of corn to replace oil for U.S. market

Potential of lignocellulosic biomass to replace oil for U.S. market

This is 17% of our total oil needs.

Notes: (1) 60 gal/ton ethanol yield; (2) source: http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf

Chemical composition of biomass

Sources: DOE Biomass Database & Dien

Challenges to processing fibrous biomass compared to grains

High bulk mat'l (wood less so)

***2-phase reactions** (β-glucan insoluble for > 10 d.p.)

◆Complex cell wall structure & lignin (e.g. storage vs. structural CHO's)

❖ Xylan related sugars not fermented by *Saccharomyces*

SSF process for converting biomass to bio-ethanol

Separate hydrolysis & fermentation (SHF) process

Advantages: fewer solids in reactor, easier to remove inhibitors, higher temp. enzyme rxn.

Pretreatment

What is expected of a pretreatment? *Allow cellulase access to cellulose polymers by disrupting cell wall structure*

- \checkmark Dissolve Hemicellulose
- \checkmark Displace Lignin
- \checkmark Swell Cellulose Bundles

Chemical mechanisms

Hemicellulose Acid hydrolyzes, alkali dissolves, hot-water acts as weak acid

Lignin

Molecular oxygen, ozone, peroxide break lignin-ether
bonds, ∆ (140°C+) melts lignin, acid hydrolyzes,
alkali saponifies ferulic/arabinose ester bonds

Cellulose

Ammonia disrupts H bonds, solvents & conc. acid dissolve cellulose polymer

High solids dilute acid pretreatment of corn stover

acellulose digestibility measured by SSF testing btotal of glucose, xylose, arabinose, galactose, and mannose in the pretreated liquid stream

Reactor: Sund Defibrator vert. pulp digestor (1 t/d) Conditions: 190 \degree C, 1 min, 0.045 g H₂SO₄/ g dry corn stover

(D. Schell, R. Elander, and J. McMillan, NREL, 2003)

CAFI results for corn stover

Preteatments Evaluated (Major PI) Ammonia Fiber Explosion (AFEX) (B. Dale) Ammonia Recycle Percolation (Y.Y. Lee) Controlled pH Hot-Water (M. Ladisch & N. Mosier) Concentrated Lime (M. Holtzapple) Dilute Acid (C. Wyman)

Funded by USDA

Comparison of yields for corn stover

Source of biomass matters!

Alfalfa Corn stover Kenaf Oak Soybean Stover Wheat straw Alkaline PeroxidePretreated Biomass

0% 20% 40% 60% 80% 100%Cellulose Conversion Efficiency

(Gould, 1984)

Inhibitor Removal

Inhibitors formed during hydrolysis

Conditioning hydrolysates

¾**"Over-Liming"**

Leonard and Hajny, 1945

¾ **Solid Extraction**

Ion-Exchange

Adsorption resin

Activated charcoal

¾ **Liquid Extraction**

¾ **Bio-remediation**

Laccase for removal of phenolic acids

Fungal removal

¾ **Other partial solutions: adapting/evolving cells, increasing size of inoculum, media, or diluting hydrolysate**

Bioabatement: inhibitors removed by *Coniochaeta ligniaria* C8

Grew in Mineral Medium On :

Furfural, HMF, *p*-hydroxybenzaldehyde, ferulic acid, acetic acid, *p*-hydroxybenzoate, catechol, gallic acid, syringaldehyde, coniferyl alcohol, vanillin, and vanillic acid.

Did not Grow on: Levulinic acid

N.N. Nichols & M. Lopez, 2004

Enzymes important for processing biomass

\bullet Cellulases

endo-1,4- β -D-glucanase , exo-1,4- β -glucanase (exocellobiohydrolase) and β -D-glucosidase (cellobiase).

• Hemicellulases endo-1,4- β -D-xylanase, EC-3.2.1.8), β -xylosidase (EC-3.2.1.37), other carbo-hydrolytic and esterases

• Ligninases

Lignin peroxidase, manganese peroxidase, and laccase

How does cellulase work?

What are the properties of *Trichoderma* cellulase?

Tolan & Foody, 1999

Importance of hemicellulases for biomass conversion

- An integral component of commercial cellulases – xylan removal a strong predicator of efficiency for glucose recovery.
- Most pretreatments do not convert hemicellulose to arabinose, xylose, etc. Hemicellulases are needed to complete saccharification.

Complex mixture of enzymes needed to degrade arabinoxylan

Selinger et al., 1996

Ineffectiveness of using a cellulase preparation on hot-water treated DDGS

Just adding GC220 Cellulase & Novo188 (40 U/g cellulose)

Activity comparisons for xylanases of various sources

***** All specific activities were compared on purified enzyme basis. The temperatures for ***** All specific activities were compared on purified enzyme basis. The temperatures for assaying the enzymes were in the range of 40 to 50°C.

Fermentation

Why Are Recombinant Microorganisms Needed for Ethanol Production?

Saccharomyces yeast do not ferment arabinose nor xylose.

Strains available for fermentation of glucose and pentoses

- I. rec *Escherichia coli*
- II. rec *Klebsiella oxytoca* (not discussed)
- III. rec *Zymomonas mobilis*
- IV. rec *Saccharomyces & other yeast*
- V. rec Thermophiles (not discussed)

Two Major Strategies

Efficient ethanol producer \rightarrow Engineer to metabolize pentoses

 Able to use wide-spectrum of sugars \rightarrow Engineer to only produce ethanol

Metabolic engineering *E. coli* for efficient production of ethanol

❖ First recombinant microorganism successfully developed for conversion of pentose sugars (arabinose and xylose) to ethanol (Ingram et al., AEM, 1987).

E. coli ferments arabinose, glucose, mannose, and xylose.

But, wild-type strains produce a mixture of fermentation products with little ethanol.

Construction of ethanologenic *E. coli* K011

Ohta et al., 1991

Ethanol fermentation of corn fiber hydrolysate by *E. coli* FBR5

Zymomonas mobilis

Anaerobic gram-negative bacteria that ferments glucose and fructose to ethanol with high yields and to high concentrations.

Traditionally used to produce Pulque and Palm Wine

High ethanol tolerance $> 15\%$ v/v & Glucose $> 25\%$ w/v

Higher specific glucose uptake rate and ethanol productivity (5x) than *Saccharomyces*

Grows at pH $3.8 - 7.5 \& 25-35$ °C

Only microbe that used Entner-Doudoroff for anaerobic growth, which allows for higher ethanol yields than *Saccharomyces* (+5%)

Related to *Gluconobacter* and *Acetobacter*

Zymomonas Xylose Engineered Pathway

 $3\text{Xylose} + 3\text{ADP} + 3\text{Pi} \rightarrow 5\text{EtOH} + 5\text{CO}_2 + 3\text{ATP} + 3\text{H}_2\text{O}$

Zhang et al., 1995

Recent progress on *Z. mobilis*

❖ Strain AX101 (derived from ATCC 39676) *Genes for Ara & Xyl utilization integrated *Phenotypically/Genetically stable after 160 generations growing on glucose *Produces less side-products ***Strain 8b (derived from ZM4/AcR; ATCC 31821)** *Genes for Xyl utilization integrated * tolerates acetic acid > 16 g/l at pH 6 *85% EtOH yield on over-limed corn stover

hydrolysate

*Genome sequence for ethanologenic bacterium *Zymomonas mobilis* ZM4 completed (Seo, J.-S et al. 2005)

(Zhang, Mohagheghi, Lawford and co-authors)

Fermentation of sugar mixture by AX101

(Mohagheghi ABB,2002 & Lawford ABB, 2002)

Approaches for developing xylose fermenting yeasts

- • Express xylose metabolic genes from natural xylose fermenting yeast strain *Pichia stipitis* in *Saccharomyces* (N. Ho, B. Hahn-Hägerdal, & L. Olsson)
- Express xylose isomerase gene from anaerobic fungus *Piromyces* sp. E2 in *Saccharomyces* (J.T. Pronk)
- Directly evolving *Saccharomyces* that ferment xylose via native pathway (van Zyl et al. 1989, Batt et al. 1986 and studied by Microbiogen & G. Sherlock)
- Engineering better native xylose fermenting *P. stipitis* (T. Jeffries)

Native xylose fermenting yeasts

Pachysolen tannophilus, Candida shehatae, and Pichia stipitis

 \triangle Co-factor imbalance = xylitol (not *P. stipitis*)

 \clubsuit Min. O_2 for optimal ethanol

Cytochrome C mutant increased ethanol yield by 21% (Shi et. al., Yeast, 1999)

Saccharomyces Xylose engineered pathway

XI: *Piromyces sp. E2 /* **XR & XH:** *P. stipitis*

Saccharomyces 1400 engineered for fermenting Xylose

Yeast strain: thermotolerant *Saccharomyces* sp. strain 1400 (fusion of *S. diastaticus* & *S. uvarum*).

Plasmid: XR and XDH from *P. stipitis* & XK from *S. cerevisiae (pLNH32).*

VIntegration: multiple copies of each gene. Stable for 50+ generations on non-selective medium (LNH-ST).

V Licensed by Iogen. Strains selected for inhibitor tolerance.

(Ho et al., AEM, 1998)

Saccharomyces cerevisiae engineered with *Piromyces* sp. E2 xylose isomerase

S. cerevisiae RWB217: XI & XK expressed on plasmid Over-expression of all 4 redox neutral PPP enzymes Aldose reductase (GRE3) disrupted (↓xylitol) Results: EtOH Yld = $0.43g/g$, xylitol = 0.4 mM; Tgen = 7.7 h

EXWB218: selected in chemostat for improved xylose transport Results: EtOH Yld = $0.41g/g$; xy litol = 0.2 mM, Tgen = 5.8 h (ferments G/X mixtures 2x faster) **(Kuyper et al., FEMS Yeast Res, 2005)**

Comparison of traits

Comparison of performances

Where do we go from here?

- Feedstock: Breeding/engineering cultivars for higher ethanol yield as a quality trait
- Pretreatment: Role of cell wall structure & lignin for cellulose digestibility
- Enzymes: Designer *T. reesei* w/over-expressed native and xeno-enzymes (balance & synergy); Enzyme blends for high-temp/high-solids saccharification
- Biocatalysts: Improved *Saccharomyces* strains (redox balance, xylose transport); Improved inhibitor tolerance; Thermophilic homo-ethanol bacteria; Consolidated Processes
- \bullet Commercialization ? Abengoa, Aventine, BCI, Dupont, Iogen etc.