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Abstract

A landslide inventory was carried out for the Little Salmon Lake area, Yukon
Territory, Canada, in response to observations of several new landslides in the area,
suspected to be the result of degrading permafrost. The largest of these landslides, the
Magundy River bi-modal flow-slide, has progressed over the last decade until it now
involves over 1x10° m* of material. The inventory is based on terrain mapping and
field work, and includes multiple landslide types. The field work provided the
opportunity to examine the slides, ground truth the map, and to examine the
progression of the landslide, as well as the massive ground ice exposed in the scarps
of the currently active slides.

Permafrost degradation can be driven by anthropogenic or natural agents of
change. The study investigated natural agents of change, as anthropogenic sources are
not active, due to the remote and undeveloped nature of the area. Temperature data
from the area indicates a warming trend of 3°C over the last 40 years, supporting the
theory that climate amelioration is one of the major factors generating the new
activation of landslides in the area.

Susceptibility maps were developed to examine the potential for landslide
initiation due to permafrost degradation. The most important data required for this
work is the distribution of ground ice. In the absence of any borehole or geophysical
data in the area, or generally of detailed mapping of permafrost distribution in the
Canadian north, an expert system was used to predict the location of ground ice.
Therefore, the landslide susceptibility maps are very dependent on the accuracy of
this map.

Should development in the wvalley proceed, more accurate landslide
susceptibility mapping would be required. Due to the importance of the ground ice
distribution and condition, it would be recommended that data be collected to
accurately map the ice and therefore to improve the accuracy of the prediction of
possible landslides.



Introduction

With increasing development in areas of discontinuous permafrost in northern
Canada, greater emphasis is being placed on slope hazard assessment. The research
project reported here was initiated in response to the occurrence of a large bi-modal
flow-type slide, the Magundy River landslide, which has progressed over the last 9
years to the point where it now involves over 1x10° m*® of material. The objective of
the project was to identify and characterize slope hazards in the Little Salmon Lake
area of the central Yukon (Figure 1): the Magundy River slide is located at the
eastern end of this area. The area is largely unpopulated at this time, and covers over
600 km® A highway runs along the north side of the lake. There is no development
on the south side of the lake at this time.

The objective of this paper is to evaluate the potential for development of
landslides triggered by degrading permafrost. A terrain mapping exercise and field
work resulted in the development of a landslide inventory map. This work formed the
basis for further analysis of several, individual landslides examined in the area, and
the development of landslide susceptibility maps. This work is predicated on the
assumption that permafrost is found within some of the slopes under investigation,
with the expectation that landslides will be triggered by processes resulting in
permafrost degradation.
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Figure 1: Little Salmon Lake, Ylj.léour{tl'erritory, Canada. a) Location, b) Physiography.

Landslide activity in the Yukon

Assessment of the linkage between permafrost and landslide activity (Huscroft et al,
2004a), as well as a regional characterisation of landslide activity has been carried out
for the Alaska Highway (Huscroft et al, 2004b) in the southern part of the Yukon.
These authors discuss the importance of climate change on forest fire frequency, river
migration, glacier mass balance and permafrost degradation, and the increased
landslide frequency associated with changes in all of these factors.

Very little is understood about landslides in the central Yukon, with the
exception of the Surprise Rapids Landslide on the MacMillan River (Ward et al.,
1992), and the retrogressive thaw slumps near Mayo (Burn 2000).



The Surprise Rapids Landslide is located along the South Macmillan River in
the Central Yukon, north-east of the Little Salmon Lake area. This landslide,
primarily of the bi-modal flow type, has been active for at least 130 years. The
complex of debris flows covers an area over 1.7 km?, making it the largest reported
failure in the central Yukon. The initial failure and triggering factors are unknown,
though climate amelioration and forest fire activity, coupled with the high ice content
of the sediments, are considered likely key factors for the initiation and continuation
of the landslide. This slide is of particular interest as it took place mid-slope at a
relatively gentle angle (approximately 5° overall) on a forested plateau. Ward et al.
(1992) conclude that the exceptional size and rapid growth of the Surprise Rapids
Landslide are seen as an example of the potential instability of hillsides with similar
slopes and aspects in the central Yukon. It provides a dramatic example of what can
happen when “warm” (near 0° C), ice-rich permafrost slopes are disturbed.

Retrogressive thaw slumps (bi-modal flows) in the Mayo area of the central
Yukon have been monitored since 1982 (Burn and Friele, 1989). The slumps occur in
glaciolacustrine silty clay in the Stewart River Valley, about 3 km upstream from the
village of Mayo. One such slump was active for 44 years prior to stabilization in 1993
due to the exhaustion of ice-rich ground (Burn, 2000).

Slope hazard identification and landslide inventory mapping

Terrain evaluation studies were carried out using airphotos and geological maps,
followed by field work, completed in 2004 and 2005. The data collected includes
airphotos, Landsat imagery, and maps displaying topography, bedrock geology
(Gladwin et al, 2002; Colpron, 2000; Campbell, 1967), surficial geology (Ward and
Jackson, 1993; Campbell, 1967), geological processes (Mougeot and Walton, 1996),
as well as forestry and forest fire inventories. Over 80 areas of past and present
landslide activity were identified in the project area (Lyle, 2006). The failure modes
evaluated include skin flows, debris flows, rock slumps, bi-modal flows and complex
slides. These slides are described in further detail by Lyle et al (2004). The major
active slides in the area started within the last decade.

The field work provided ground truth for the terrain evaluation and provided
data to further characterize the most prominent and active landslides, and to confirm
the veracity of the landslide distribution and inventory mapping (Figure 2a). From the
data collected during the inventory phase of the work, landslide attributes such as
slope angle, slope aspect, surficial sediment type, depth of overburden and sometimes
geomorphic processes can be developed (Bichler et al., 2004). Further analysis
generates maps of distribution of causal factors, such as permafrost distribution
(Figure 2b), and landslide susceptibility (Figure 2c).

The bi-modal flow (Magundy River slide: Figure 3) and complex sliding
modes (YT slide: Figure 4) are of particular importance, as massive ground ice has
been exposed by large failures of these types. As shown in Figure 4b, this provides an
opportunity to observe the extent and volume of the degrading permafrost. The
Magundy River landslide develops into a continuous mudflow during the summer
months, with material supplied by ongoing bank failure and retrogression. The first
evidence of the YT slide was the presence of the back scarp crack. Since that time,
the slide has progressed through a series of slumps and slides of material.
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Figure 2: Little Salmon Lake mapping: a) landslide inventory map, b) estimated permafrost

distribution map, and c) skin flow susceptibility map. North is to the left.
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Figure 3: Magundy River Landslide: a) overview looking south; b) active thaw slump area
(note author for scale); and c) active debris flow.

Figure 4: YT Landslide: a) overview, looking approximately south (Aug. 2004); b) massive
ice in sediments exposed in landslide scarp; ¢ & d) overview photos, looking south from
across Little Salmon Lake. Note the changes between photo (c) taken on Aug. 3, 2004, and
photo (d) taken on Aug. 2, 2005.



Permafrost distribution and condition

Permafrost, ground remaining below 0°C for two years or more, is found under
approximately one-half of the Canadian landmass (Wolfe, 1998). The Little Salmon
Lake area is located at the boundary between the sporadic discontinuous and
extensive discontinuous permafrost zones as defined by Heginbottom et al (1995). In
general, there is a general lack of knowledge of permafrost conditions in the
mountains of northern Canada, since there are no maps available (Lewkowicz, 2004).

Permafrost degradation, leading to ground subsidence and landsliding, can
result from a number of influences, whether anthropogenic or natural (Figure 5).
Thawing of ground ice is the greatest hazard associated with permafrost (Dyke, 2004)
for when ice occurs in excess, significant landscape changes will take place upon
thaw. Climate warming or forest fire effects can and will lead to thawing of ground
ice, leading to surface subsidence, increases in slope failures, and sediment deposition
in water bodies (Heginbottom, 2000). Although forest fires cause the most
widespread disturbance to surface conditions in permafrost areas (Haeberli and Burn,
2002), inventory data indicates that no major fire activity has occurred in the Little
Salmon Lake area for at least 60 years.
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Figure 5: Natural agents of change leading to permafrost degradation (modified from French,
1996). Anthropogenic sources are also discussed by French (1996).

Most climatological models suggest an accelerating global warming trend,
and northern regions are expected to experience the greatest increases in temperature
(Serreze et al., 2000). It is believed that the warming trend, observed in climate
records from Environment Canada (Fig. 6) will lead to more extreme climatic events,
which, in turn will increase landslide frequency (Huscroft et al., 2004b, Haeberli and
Burn, 2002, Harris et al., 2001, Nelson et al., 2002, Evans and Clague, 1994).

Primary controls on permafrost distribution in the region include slope aspect,
elevation, surficial material type and age, vegetation cover and drainage conditions.
Local climatic effects such as snow depth variation and temperature inversions may
also control permafrost distribution. In general, permafrost is thicker and more
widespread on north-facing slopes where hill-slope shading, thick vegetative mats
and poor drainage conditions exist.
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Figure 6: Climate data for Drury Creek (eastern end of lake), and Carmacks (100 km west).

Of critical importance to assessing the ongoing and future stability of this area
is the evaluation of the extent and amount of ground ice. Unfortunately, ground ice
content cannot be easily predicted without subsurface data. Subsurface data is very
sparse in northern Canada, with exceptions being the geotechnical drilling databases
available for the Mackenzie Valley and the Alaska Highway (Huscroft et al, 2004a).

Due to the lack of data, an expert system rule set was developed to estimate
the permafrost distribution. This was based on work by Cété (2002), who examined
the influence of elevation and slope aspect on permafrost distribution at Keno Hill,
located 200 km north of Little Salmon Lake. The expert system for Little Salmon
Lake is based on slope aspect, land cover and elevation data (Figure 7), and was used
to create the permafrost distribution map (Figure 2b). Discussion of the logic used in
the rule set development is presented by Lyle (2006).This process provides a starting
point for the analysis, in spite of the limitations and assumptions of this methodology.

Elevation |

Above Tree-line Below Tree-line

Ad
Fermafrost | Land Cover | | Aspect

———- Waterbody —— & All — No Permafrost

— Deciduous trees —— All —» No Permafrost
Wetland All Unknown

N, E, W —s Permafrost
l» Coniferous trees, dense S ——» No Permafrost
|~ Flat — Unknown

|, Rock, rubble, exposed land,
shrub, other tree types

S— No Permafrost

[ N——>Permafrost
E, W, Flat — Unknown

-+ Shadow, unknown = All + Unknown

Figure 7: Rule set for the determination of the presence of permafrost in the Little Salmon
Lake area using tree-line, land cover and slope aspect data. Based on Coté (2002).

These data were then combined with other important landslide causal
information to develop landslide susceptibility maps, using both a geomorphological
analysis and a qualitative map combination approach (defined by Soeters and van



Westen (1996)), at a regional scale (Lyle, 2006). The approach includes a detailed
inventory of slope instability processes (Fig. 2a), study of these processes in relation
to their environmental setting, analysis of preparatory and triggering factors, and a
representation of the spatial distribution of these factors (Fig 2b).

The assessment of the susceptibility of stable and marginally stable slopes to
landsliding is based on the assumption that hazardous phenomena that have led to
failure in the past provide suitable information to predict future failures. Therefore,
the mapping of these phenomena is very important in susceptibility mapping. The
absolute and relative timing of the occurrence of causal factors is very difficult to
predict and the majority of hazard maps thus aim to predict where failures are most
likely to occur without indicating when that failure might occur (Carrara et al., 1995).

Qualitative map combination was used to create the skinflow susceptibility
map shown in Figure 2c. This was done by combining permafrost, slope aspect, land
cover, slope angle and surficial geology parameter maps, with qualitative weight
values given to each class of the parameter maps and each map’s contribution
weighted according to its importance. Weighting values were determined based on
the field knowledge of the mapper about causal factors of skinflows, and are
described in more detail by Lyle (2006). Though the results shown in Figure 2c) fit
well with the existing skin flows in the area, this does not represent a validation of the
model, particularly given the uncertainty with respect to ground ice distribution and
condition in this area where no intrusive work has been carried out.

Conclusions

It is anticipated that continuing warming trends in the climate will continue to melt
the ground ice, triggering further landslides in the Yukon. The recent development of
several new landslides in the Little Salmon Lake area, without any other known
causal factor influence, is taken as an indication of the effects of continued warming.
Landslide mapping approaches have been applied to this problem, including creation
of a landslide inventory map and development of permafrost distribution maps.

The scale of mapping was constrained by the challenges met within this
project, including limited access to many parts of the area mapped, sporadic historical
aerial photographic coverage, limited detail provided by regional scale surficial and
bedrock geology mapping and a coarse scale digital elevation model. Furthermore,
the most critical parameter, the presence of permafrost and ground ice, was inferred
from an approach applied to other areas in the Yukon, based on substantial
assumptions, but not verified by intrusive, subsurface investigation.
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