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Abstract 
 
The impact of earthquakes in urban areas is a complex problem compounded by 
multi-hazard and consequential risk issues, enormous inventory of vulnerable 
physical elements and the attendant socio-economic problems.  A review of our 
state-of-knowledge and applications on the assessment of urban earthquake risk is 
provided. Rational urban risk predictions and expected losses from major 
earthquakes in the future serve the basis and also provide strong reasons for the pro-
active risk mitigation activities. 
 
Introduction 
 
In recent decades, earthquake disaster risks in cities have increased mainly due to a 
high rate of urbanization, faulty land-use planning and construction, inadequate 
infrastructure and services, and environmental degradation. Thus for urban centers 
under possible exposure to large earthquakes, it is imperative that certain 
preparedness and emergency procedures be contrived in the event of and prior to an 
earthquake, which in turn requires quantification of the effects of the earthquake on 
the physical and social environment. The main element of such quantification is the 
building losses, which is directly related to casualties, planning of emergency 
response, first aid and emergency shelter needs.  

A compilation of worldwide investigations on urban earthquake risk is 
presented in Tucker and Erdik (1994). In Japan, Oyo Corporation has produced an 
earthquake damage scenario development methodology (Komaru et al. 1995) that has 
found application in several cities (e.g., Kawasaki City, Saitama Prefecture, 
Kanagawa Prefecture, Quito, Tehran) as well as in the IDNDR RADIUS 
(http://geohaz.org/radius/) Project. EPEDAT (The Early Post-earthquake Damage 
Assessment Tool) (Eguchi et al. 1997) is a GIS-based system capable of modeling 
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building and lifeline damage and estimating casualties in near real-time given the 
source parameters of an earthquake. HAZUS (http://www.fema.gov/hazus/) is a 
standardized earthquake loss estimation methodology intended for national 
application in the U.S. (Whitman and Lagorio 1999). A number of cities worldwide 
(Addis Ababa, Antofagasta, Bandung, Guayaquil, Izmir, Tashkent, Skopje, Tijuana 
and Zigong) were engaged in risk modeling in the UN-IDNDR program RADIUS 
(http://geohaz.org/radius/). Several earthquake loss scenario assessment studies at 
various levels of sophistication have also been carried out in Europe (ENSeRVES 
2000); Basel (Faeh et al. 2001); Barcelona (Barbat et al. 1996); Catania (Faccioli et 
al. 1997); Quito (Fernandez et al. 1994); Istanbul (Erdik et al. 2004; JICA 2002); 
Izmir (Erdik et al. 2000) and; Bucharest (Wenzel et al. 1998). A EC-funded research 
project, RISK-UE (http://www.chez.com/riskue /scope.htm) has developed a general 
and modular methodology for creating earthquake-risk scenarios that concentrates on 
the distinctive features of European towns, including both current and historical 
buildings. Also, within the EU-funded Safety Assessment for Earthquake Risk 
Reduction Project (SAFERR - http://www.saferr.net/index.htm), several European 
research groups have undertaken investigations characterization of seismic hazard 
and risk assessment systems to provide tools for application of risk assessment. 
 
Earthquake Hazard 
 
Earthquake hazard assessments, conducted in connection with risk analysis in urban 
centers can be conducted using probabilistic or deterministic approaches. To obtain 
the probable losses in a given urban subdivision or geo-cell probabilistic approach 
would be appropriate. However, since all the probabilistic losses at a given geo-cell 
cannot take place simultaneously the sum of these individual losses will overestimate 
the total loss in the urban area. Furthermore for assessment of lifeline damages, 
where a spatial system-based approach is needed, the probabilistic approaches may 
also be inadequate. As such urban earthquake loss assessments have been 
traditionally linked to a (or set of) scenario earthquake in a deterministic manner. 
The scenario earthquake can be assessed through de-aggregation of the probabilistic 
hazard to find the source that contributes most to the overall hazard (Thenhaus and 
Campbell 2003; Somerville and Moriwaki 2003; Faccioli and Pessina 2003).  

Topics associated with the evaluation (probabilistic or deterministic) of 
ground motion involve consideration of: 
• Earthquake Source Process 
• De-aggregation of Probabilistic Hazard 
• Empirical Attenuation Relationships 
• Near Fault Effects (Radiation Pattern and Directivity) 
• Site Response 
• Analytical Simulation Procedures 

Currently reliable empirical models exist in terms of peak ground 
acceleration, velocity and displacement (PGA, PGV and PGD) and, pseudo spectral 
velocity (PSV), at specific frequencies and damping ratios, for given earthquake 
magnitude, distance, fault mechanism and local geology (e.g. Boore et al. 1993; 
Campbell and Bozorognia 1994; Gregor 1995; Fukushima and Tanaka 1990; 



Ambraseys and Bommer 1995; Campbell 2003a, 2003b). Although the data are 
biased towards well instrumented regions of the world (e.g. California, Japan and 
Italy) recent comparisons indicate that, with identical definitions of input parameters, 
the difference amongst Western USA, Japanese and European based attenuation 
relationships are less than the scatter in any one of them (Fukushima and Tanaka 
1990; Ambraseys and Bommer 1995). This finding enhances their utilization in other 
parts of the world with limited strong motion data. Although highly complex 
numerical simulation procedures exist for the determination of ground motion on the 
basis of fault rupture mechanism and wave propagation, problems associated with 
the parameterization will preclude their routine use in future earthquake loss scenario 
developments.  

In Istanbul, the earthquake hazard has been assessed using deterministic 
(Mw=7.5 earthquake on the Main Marmara Fault) means. The site-dependent 
spectral accelerations, provided in Fig. 1, are used in the construction of the so-called 
“Uniform Hazard Response Spectrum” (NEHRP 1997) to model the earthquake 
demand for spectral displacement-based vulnerability assessments (Erdik et al. 2004). 
The spectral accelerations for the periods T=0.2s. and T=1s, calculated for NEHRP 
B/C boundary site class, are modified using the site coefficients presented in the 
1997 NEHRP Provisions.  
 

 
 

Figure 1. Site dependent spectral acceleration (T=0.2s, in g for the figure at left; 
T=1.0s, in g for the figure at right) distribution in Istanbul.  
 
Elements at risk 
 
In urban areas the population, structures, utilities, systems, and socio-economic 
activities constitute the "Elements at Risk". Buildings and lifeline systems are 
generally termed “Built Environment”. The physical losses to elements at risk that 
would result from a specified earthquake scenario necessitate an extensive and 



comprehensive collection of their inventories. Preparation of urban earthquake 
damage/loss scenarios encompass involve compilation of information on: 
Demographic structure for different times of the day; building stock and its 
typification; lifeline and infrastructure (major roads, railroads, bridges, overpasses, 
public transportation, power distribution, water, sewage, telephone, and natural gas 
distribution systems) including their nodal points (stations, pumps, switchyards, 
storage systems, transmission towers, treatment plants, airports, marine ports etc.); 
major and critical facilities (dams, power plants, major chemical and fuel storage 
tanks) in the form of GIS databases.  

In HAZUS (1999) the general building inventory includes residential, 
commercial, industrial, agricultural, religious, government, and educational buildings. 
A building inventory classification system is utilized to group buildings with similar 
damage/loss characteristics into a set of pre-defined building classes to 
commensurate with the relevant vulnerability relationship classes. For earthquake 
loss estimation purposes, the building inventory in Istanbul was divided into three 
main groups based on the construction type, number of stories and construction date 
(Erdik et al., 2004). To provide an example the distribution of post-1980 mid-rise 
reinforced concrete buildings are illustrated in Fig. 2 (Erdik et al. 2004). 
 

 
 

Figure 2. Distribution of (numbers per cell) mid-rise reinforced concrete buildings 
(post-1980) in Istanbul. 
 
Earthquake Vulnerabilities 
 
Vulnerability functions (or fragility curves) of an element at risk represent the 
probability that its response to earthquake excitation exceeds its various performance 



limit states based on physical and socio-economic considerations. Vulnerability 
assessments are usually based on past earthquake damages (observed vulnerability) 
and on analytical investigations (predicted vulnerability). Primary physical 
vulnerabilities are associated with buildings, infrastructure and lifelines. These 
vulnerabilities are agent- and site-specific. Furthermore, they also depend on design, 
construction and maintenance particularities. Secondary physical vulnerabilities are 
associated with consequential damages and losses. Socio-economic vulnerabilities 
include casualties, social disruption and traumas and economic impacts. 
 
Physical Vulnerabilities 
 
Almost all of the earthquake loss scenario developments have used building 
vulnerability matrices that relate descriptive damage classes to earthquake motion 
intensities. Coburn and Spence (1992) provide observed vulnerability functions 
(percent of buildings damaged) for common building types. ATC-13 (1985) provides 
loss estimates for 78 different building and facility classes for California. The 
analytical estimation of structural damage has been recently standardized (HAZUS 
1999), where the vulnerability relationships (also called fragility curves) are 
described in terms of spectral displacements, which in turn are calculated from the 
estimated mean inelastic drift capacities of buildings for various damage states. 
Modern buildings can suffer major functional and economic loss by damage to the 
equipment and furniture in their house, even though the structures experience little 
damage. Especially in research laboratories, hospitals and offices, unanchored 
equipment is highly vulnerable to earthquake damage. The same also applies to 
exhibited pieces in museums and in art galleries.  

A compilation of lifeline vulnerability functions and estimates of time 
required to restore damaged facilities are provided in ATC-25 (1991). The 
vulnerability functions are based on the review of existing models and the expert 
opinion in ATC-13(1985) supplemented by an expert technical advisory group.  

Only limited vulnerability models exist for secondary damages for secondary 
hazards, such as: post-earthquake fire, hazardous material release, explosions and 
water inundation. Recent developments in fire following earthquake models include 
three stages: ignition, spread and suppression, and provide first-order estimates of 
total losses as functions of intensity, wind, building density and fire engine number.  
 
Socio-Economic Vulnerabilities 
 
The socio-economic vulnerability of the urban system also needs to be assessed in 
terms of casualties, social disruption and economic loss for a comprehensive 
earthquake damage and loss scenario. Casualties in earthquakes arise mostly from 
structural collapses and from collateral hazards. Lethality per collapsed building for a 
given class of buildings can be estimated by the combination of factors representing 
the population per building, occupancy at the time of the earthquake, occupants 
trapped by collapse, mortality at collapse and mortality post-collapse.  

Production and/or sales lost by firms due to damaged lifelines, losses arising 
from tax revenues and increased unemployment compensations. Partial 



quantification of these indirect economic losses can be found in ATC-25 (1991). 
More than detailed economic models, practical rules need to be incorporated in the 
loss assessments for the evaluation of complex economic impacts.  
 
Urban Earthquake Risk Results 
 
In the context of damage scenarios risk can be defined as the losses to the elements at 
risk that can result from the occurrence of scenario earthquake(s). Damage scenarios 
are the vehicles to portray these risks. Following is a brief review of current 
developments in earthquake damage and loss scenarios: 

In Japan, Oyo Corporation (1988) has produced an earthquake damage 
scenario development methodology (Komaru et al. 1995) that has found application 
on several cities (e.g. Kawasaki City, Saitama Prefecture, Kanagawa Prefecture, 
Quito-Equator and Tehran-Iran) as well as in the IDNDR RADIUS Project. The 
methodology encompasses: Identification of disaster prevention problems in the 
objective area; postulation of the kinds of earthquakes that may affect the area; 
mapping the distribution of their seismic intensities and assessing the probable 
effects of their seismic motion; estimation of damage to structures, lifeline facilities; 
estimation of fires, casualties and time to restoration of normal conditions.  

Under the general title of "Planning Scenario", California Department of 
Conservation-Division of Mines and Geology has prepared earthquake damage 
scenarios for several areas in California (Toppozada et al. 1988, 1993, 1994). The 
seismic shaking intensity maps were developed on the basis of an Evernden et al. 
(1981) type model where various geologic units are assigned intensity adjustment 
factors relative to the bedrock. Assessment of the building damage was limited to 
public high schools and hospitals. Damage, loss of service to highways, airports, 
marine facilities, railroads, electric power (plants and facilities), natural gas (storage, 
transmission and distribution pipelines), water supply (source, transmission, 
treatment, distribution), dams and reservoirs, waste water (collection, treatment, 
discharge), telephone systems have been assessed and the restoration periods have 
been estimated by treating these elements as parts of a network as well as on nodal 
point basis. 

HAZUS, a standardized nationally applicable earthquake loss estimation 
methodology implemented through PC-based geographic information system 
software (Whitman and Lagorio 1999). HAZUS provides quantitative estimates of 
losses in terms of direct costs for repair and replacement of damaged buildings and 
lifeline system components; direct costs associated with loss of function (e.g., loss of 
business revenue); casualties; people displaced from residences; quantity of debris; 
regional economic impacts; functionality losses in terms of loss-of-function and 
restoration times for buildings, critical facilities such as hospitals, and components of 
transportation and rudimentary analysis of loss-of-system-function for utility lifeline 
systems.  

KOERILoss is software developed by the Earthquake Engineering 
Department of Bogazici University, Kandilli Observatory and Earthquake Research 
Institute (KOERI). The software applies a loss estimation methodology (Probabilistic 
vs Deterministic) developed by KOERI to perform analyses for estimating potential 



losses from earthquakes. A code to evaluate seismic scenarios has been developed by 
the Italian National Seismic Service (SSN) (Di Pasquale and Orsini 1997). In this 
tool, intensity is used for loss estimate. The seismic demand over the urban region 
(municipality) is assigned an average intensity.  
 
Example: Urban Earthquake Loss Assessments from Istanbul 
 
The results from the earthquake risk assessment in Istanbul conducted by the 
Department of Earthquake Engineering of Bogazici University (Erdik et al. 2003 and 
2004) will be used to provide illustrative examples of urban earthquake loss 
assessment. Under exposure to the scenario earthquake (Mw=7.5 on the Main 
Marmara Fault) the expected number of buildings damaged beyond repair (i.e. 
EMS’98 damage grade > D3), calculated both by the intensity-based and the spectral 
displacement-based approaches, are provided in Fig. 3 and Fig. 4. The expected 
scenario earthquake casualties in Istanbul were estimated using both the intensity-
based and the spectral displacement-based approaches. The results for nighttime 
population obtained for severity level 4 (death) from the spectral displacement-based 
approach is given in Fig. 5. To provide an example for the assessment of urban 
lifeline losses the distribution of “High Risk” bridges and viaducts in Istanbul 
overlaid with the peak ground velocity map resulting from the scenario earthquake is 
provided in Fig. 6.  
 

 
 

Figure 3. Distribution of all buildings damage beyond repair under exposure to 
scenario earthquake (intensity-based loss assessment approach) 

 



 
 

Figure 4. Distribution of all buildings damage beyond repair under exposure to 
scenario earthquake (spectral displacement – based loss assessment approach). 
 

 
 

Figure 5. Distribution of casualties (severity level -4) under exposure to scenario 
earthquake (spectral displacement – based loss assessment approach). 



 

 
 

Figure 6. Distribution of the “high risk” bridges and viaducts based on the ATC6-2 
method, overlaid with the peak ground velocity map resulting from the scenario 
earthquake. 
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