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1- MICROWAVE PYROLYSIS FUNDAMENTALS

In pyrolysis technology, the needed heat energy can be 

provided by: 

 Heat transfer form a heating source, it called

conventional pyrolysis (C-P),

 Heat generated within the heated material by an

electromagnetic irradiation, it called microwave

pyrolysis (MW-P).
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2- MICROWAVE PYROLYSIS FUNDAMENTALS

-Frequency range: 0.3to 300GHz,

- Wave length:10-3 to 1m.

-In North America, the frequencies
designated for industrial applications
are 0.915, 2.45, 5.8, and 22 GHz.

-The frequency used in domestic
microwave ovens and laboratory
reactions is 2.45GHz (12.2 cm)

What is Microwaves?
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2- MICROWAVE PYROLYSIS FUNDAMENTALS

In presence of an oscillating electromagnetic field, molecular-dipoles reorient

themselves in order to be in phase with the alternating field.
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• M. Percy Spencer working 
with RAYTEHON in 1945 for 
Microwave Radar 
Transmitters;

• Accidental Discovery: 
Melting Choclate bar;

• 1st Wicrowave Oven in 1947 
(1.8 m high and 340 Kg): 
3kW 60,000$

21/06/2014
7

THE 1ST MICROWAVE OVEN
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The main parameters describe the level of heat-generation
inside a heated material are:

 Dielectric constant (ε/):

represents the amount of electric energy that can be stored
within the heated material.

 Loss Factor (ε//):

represents the ability of the heated material to dissipate
microwave energy.

Penetration depth (DP ):
the depth where the magnitude of the electric field drops
by a factor 1/e with respect to the surface value.

 loss tangent (tanδ):

the ratio between ε// and ε/.

1- MICROWAVE PYROLYSIS FUNDAMENTALS
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Material Temperature Frequency GHz

Vacuum 1.00 0 0 25C ND

Air 1.0006 0 0 25C ND

Glass 4.82 0.026 0.0054 25C 3

Alumina 8.9 0.009 0.00010 800C (3.89-3.61) 

Fused quartz 3.8 0.0001 0.00003 25C 2.45

Pyrex 4 0.005 0.0013 25C 2.45

Water 80.4 9.89 0.123 25C 2.45

Methanol 32.6 21.48 0.659 25C 2.45

Ethanol 24.3 22.86 0.94 25C 2.45

Silicon carbide 105 110 1.048 200C 2.45
-D. C. F. D.E. Clark, "What is microwave processing," presented at the Microwave Solutions for Ceramic Engineers, Westerville, OH 
2005.
-E. W. W. L. Manoj Gupta, Wai Leong Wong, Microwaves and metals: John Wiley & sons (Asia) Pte Ltd 2007.

Dielectric constant, dielectric loss, and loss tangent of different materials.

1- MICROWAVE PYROLYSIS FUNDAMENTALS
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1- MICROWAVE PYROLYSIS FUNDAMENTALS

Wood block heated by 2.45GHz 
microwaves for 360s @ 2.7kW.

In addition to the previous, using of MW-H under controlled
conditions would promise to eliminate several
issues/limitations contrasting to conventional heating (C-H).

Therefore, MW-H would promise to improve product selectivity/quality.

Outer 
Surface Core
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One of the MW-H challenges is that measuring of a
transient temperature within the heated material.

Thermocouple thermometer is danger with low accuracy, for the
interaction between microwaves and thermocouple metallic probe;

Infrared thermometer is suitable only for  a very thin sample because it 
measures a surface temperature;

Fibre optics thermometer measures a point temperature with a limited 
range; in addition,  it needs highly care; to avoid probe damage. 

We have passed this challenge by innovating a thermometer
that can be used inside a microwave oven, during the heating.

2- TEMPERATURE MEASUREMENT/PREDICTION
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Drawing of the air-thermometer used

A novel thermometer, which can measure transient mean
temperature within the heated material, has been made.

Measured and reference temperature 
vs. heating time

2- TEMPERATURE MEASUREMENT/PREDICTION
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2- TEMPERATURE MEASUREMENT/PREDICTION

Assumptions:

1- Uniform distribution of electromagnetic waves. 

2- All the heated  materials are non-magnetic materials

3- Variation of volume and physical/electrical 
properties are considered negligible.

4- Neglect any effect related to a chemical reaction.

(Po)material= 2.25x106(ε/ tanδ)material [W/m3] @ 2.3kW/2.45GHz.

In addition, a 3D Mathematical model was done; to predict temperature profiles
within a material exposed to MW-H.

Farag, S. and J. Chaouki., Temperature profile prediction within selected materials heated by microwaves at 2.45GHz.
Applied Thermal Engineering, 2012. 36(0): p. 360-369.
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Experimental and predicted results for validation of the 
model for the case of Free Convection (FC)

The average percentage relative error between the predicted and the
experimental values was ±4% of the measured value from Tamb to 500K.

2- TEMPERATURE MEASUREMENT/PREDICTION
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(A) (B)
The temperature profiles on the selected line over 300s of MWH: 

(A) With FC and (B) With PI. (time in seconds)

2- TEMPERATURE MEASUREMENT/PREDICTION
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(A) (B)
The effect of the heated material dimensions on the temperature profiles 

(A) 200mm and (B) 400mm of cube side length

2- TEMPERATURE MEASUREMENT/PREDICTION
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(A) (B)
The effect of substituting wood with carbon (A) 50 wt-% carbon and 

(B) 75 wt-% carbon

2- TEMPERATURE MEASUREMENT/PREDICTION
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(A) (B)
The effect of 125cm3 carbon cube: (A) Embedded in the core

(B) Covered the outer surface 

2- TEMPERATURE MEASUREMENT/PREDICTION
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3- REACTION KINETICS OF MW-P VS. C-P

Selected examples regarding MW-H effects on a chemical reaction.

Author Objective MW-H effect

Eymir Tekin and 

Okur. 2011.

Dissolution of colemanite in boric
acid solutions in C-H and MW-H.

Superior conversions can be obtained 
via MW-H.

Temur Ergan and 

Bayramoğlu. 

2011.

Investigate the specific effects on 
decomposition of aqueous 
Potassium Persulfate.

Rate constant was about 1.1 to 1.8 times 
higher than that of C-H at the same 
temperature, depending on the MW-H 
power.

Chandra Shekara,  

et al. 2011.

Heterogeneous esterification of 
phenylacetic acid with p-cresol over 
H-β zeolite catalyst under MW-H.

MW-H was found to be superior to C-H 
in terms of yields, and in short reaction 
periods. 

A. Domínguez, 

Menéndez ,et al. 

2005.

Investigations into the 
characteristics of oils produced 
from MW-P of sewage sludge.

The oils from MW-P are more aliphatic
and oxygenated than those produced by
C-H at the same temperature, and they
still preserve some of the functional
groups from the sludge.
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3- REACTION KINETICS OF MW-P VS. C-P

Selected examples regarding MW-H effects on a chemical reaction cont.

Author Objective MW-H effect

Zhang and Zhao.
2010.

Production of 5-hydroxymethylfurfural
and furfural from lignocellulosic biomass
(Corn stalk, rice straw, and pine wood) in
an ionic liquid.

Increases product yield and decreases
reaction time.

Budarin, Clark et
al. 2009.

Preparation of high-grade bio-oils from
wheat straw as a pellet using MW-P.

The produced bio-oil is rich in
aromatics compared to the other
produced by the conventional
methods.

Guiotoku, Rambo
et al. 2009

Studying of hydrothermal carbonization
method of pine sawdust and cellulose.

Increases the carbonization yield.

Krzan and Zagar

2009.

Liquefaction of biomass (Poplar sawdust,
wood chips, barks) with glycols using p-
toluenesulfonic acid as a catalyst.

Decreases liquefaction time with
minimum use of catalyst.
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LITERATURE OBSERVATIONS

Selected examples regarding MW-H effects on a chemical reaction cont.

Author Material Observation

Chandra Shekara, 
et al. 2012.

Solventless acylation of p-cresol with 
different carboxylic acids over BEA 
zeolite.

Achieves more conversion
compared to CH: 50-80% in MW-H,
compare to less than 20% on C-H.

Patil, Gude et al. 
2011.

Transesterification of Camelina sativa
oil using metal oxide catalysts under
C-H as well as MW-H

The reaction rate constants are two
orders of magnitude higher than
those obtained with C-H.
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3- REACTION KINETICS OF MW-P VS. C-P

An original MW-TGA was built and equipped with a product
manifold; to be used in kinetic purposes.

MW-TGA equipped with a product manifold 



World-Class Engineering
21/06/2014

25

3- REACTION KINETICS OF MW-P VS. C-P

Decomposition fraction vs. temperature: experimental and predicted; 
(A) MW-P and (B) C-P.

Sawdust was chosen because it does not have a high resistance
for thermal degradation.
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3- REACTION KINETICS OF MW-P VS. C-P

Ea

kJ/mol]

ko

[min-1]

n

[ ]

Deviation

(%)

The 

process

31 683 2 2 MW-P

31 349 1 6 MW-P

31 101 1 7 C-P

31 166 2 12 C-P

MW-P may have a reaction rate faster than that of C-P, for
molecular chaotic-motion resulted by the oscillating-
electromagnetic-waves. Accordingly, (ko) MWP > (ko)CP.

The estimated kinetic parameters in MW-P and C-P
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3- REACTION KINETICS OF MW-P VS. C-P

Compared to the exegeses that have reported in the literature;

Binner, Hassine et al. (1995) have reported that
“Analysis of the results indicates that the microwave reaction rates were 3.3-3.4 times faster. It would appear that the
phenomenon can be explained by a 3.3-fold increase in the Arrhenius pre-exponential
factor, A, with no change in the activation energy. The pre-exponential factor is dependent on the vibration

frequency of the atoms at the reaction interface and hence it could be postulated that this might be being affected by the microwave field.
Attempts to explain the increased reaction rates in terms of faulty temperature measurement were unsuccessful.”

Temur Ergan and Bayramoğlu 2011 have documented that
“The experiments showed that MW energy input influences the decomposition rate of K2S2O8 in aqueous solution. The reaction
order is not affected, but the rate constant is influenced by MW irradiation. The increase in the rate

constant is not as high as expected when compared to previously reported values. Thus, these results neither prove nor reject the existence of a
strong “specific MW” effect on chemical reactions.”

Binner, J. G. P., N. A. Hassine, et al. (1995). "The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of 
titanium carbide." Journal of Materials Science 30(21): 5389-5393

Temur Ergan, B. a. and M. Bayramoğlu (2011). "Kinetic Approach for Investigating the “Microwave Effect”: Decomposition of Aqueous Potassium Persulfate." Industrial & Engineering 
Chemistry Research 50(11): 6629-6637.
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3- REACTION KINETICS OF MW-P VS. C-P

1-Online measurement by placing a thermocouple 
5 mm directly above the sample.

2- Inserting a thermocouple into the center of the 
sample immediately after turning off microwaves.

The used measurement technique was the 
main reason behind this wrong explanation.

Sun, J., W. Wang, et al. (2012) have claimed that
“Compared with a simulated conventional TGA incorporating a similar heating rate, the activation energy in microwave-
induced pyrolysis is much smaller. This can be attributed to the internal-type heating style and a catalyst effect caused by 

the presence of microwave heating or microwave-metal discharges. .”

Authors of this work have done the temperature measurements by two ways:

Sun, J., W. Wang, et al. (2012). "Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating." Energies 5(9): 3295-3306.
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4- ENERGY CONSUMPTION OF MW-H

The key factors, which affect on energy consumption of
MW-P are:

 Level of microwave-to-heat conversion, which
depends on dielectric properties of the heated material. It

can be improved by adding a strong microwave-to-heat converter

(carbon, silicon carbide, etc.);

 Payload dimensions, which is limited by penetration
depth of the heated material (depends on dielectric properties ).

Nevertheless, exposure time and setting power could not be
considered as key factors; they depend on the previous
parameters.
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4- ENERGY CONSUMPTION OF MW-H

Effect of payload dimensions/mass 

Correlation between total batch pyrolysis time and the square 
root of the modified mass-power ratio. 

t= batch time (s)
d= dry mass (g)
m= moisture (g)
P= MW power (W)

Amr Sobhy, et al. (2013). “Simplified Global Model for Semi-Batch Microwave Pyrolysis of Lignocellulosic Biomass”, will be submitted soon
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4- ENERGY CONSUMPTION OF MW-H

Undri, A., S. Meini, et al. (2012). "Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added
products." Journal of Analytical and Applied Pyrolysis.

Effect of payload dimensions/mass 

Ratio between microwave power (P) and payload mass square 

(m2). MW-P of waste tires.
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4- ENERGY CONSUMPTION OF MW-H

Comparison of energy saving for conventional and microwave processes of ceramics.

Energy saving (X106 kW.hr/yr)

Conventional 
drying

Microwave 
drying

Conventional 
firing

Microwave 
firing

Total 
energy 
saving

Brick and tile 56.1 28.05 198.9 19.9 207.06

Electrical porcelain 3.52 1.76 12.48 1.25 12.99

Glazes 16.63 8.3 58.97 5.89 61.37

Pottery 1.96 0.98 6.95 0.69 7.23

Refractory 10.87 5.4 38.53 3.85 40.08

W. W. L. Manoj Gupta, Eugene, "Microwave Heating," in Microwaves and metals, ed singapore: john willey, 2007.
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5- BIOMASS/WASTE TO VALUE ADDED CHEMICALS

Product and yield Feedstock MW-P C-P

Gas yield (wt%) sewage sludgea 33–45 22–35

coffee hullsb 60–70 55–65

glycerolc 55–85 47–82

Production of syngas (H2 +CO) 
[L g-1 feedstock]

sewage sludgea 0.50–0.56 0.25–0.40

coffee hullsb 0.41–0.62 0.17–0.36

Glycerolc 0.34–0.93 0.20–0.87

wheat straw 54% total gas volume (37% H2) <40% total gas volume

corn straw 54% total gas volume (35% H2) <40% total gas volume

Production of CO2 
[L g-1 feedstock]

sewage sludge 0.02–0.15 0.04–0.18

coffee hullsb 0.20–0.34 0.45–0.65

glycerolc 0.00–0.04 0.00–0.15

Oil yields 
[wt%]

waste oild 85 46–80

sewage sludge Ae 10.3 3.1

sewage sludge Bf 2.2–4.0 0.9

Petroleum fractions in wasteoil pyrolysis (%) waste automotive 
oilg

Gasoline (C4–C12): 69 Gasoline (C4–C12): 40

Kerosene (C11–C15): 16 Kerosene (C11–C15): 18

Diesel (C15–C19): 15 Diesel (C15–C19): 13

Heavy oil (>C19): 4 Heavy oil (>C19): 34

a T=1000C, moisture content: 0–81 wt%, two different feedstocks. b T=500–1000 C. c T ¼ 400–900C. d T ¼ 550C. e T=1000 C. f T ¼ 1000C, two different 
microwave devices and microwave absorbers. g MW-P vs. C-P using an electric oven. 
Luque, R., J. A. Menendez, et al. (2012). "Microwave-assisted pyrolysis of biomass feedstocks: the way forward?" Energy & Environmental
Science 5(2): 5481-5488.

Selected results showing different products produced by MW-H and C-P
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5- BIOMASS/WASTE TO VALUE ADDED CHEMICALS

Authors Feedstock Yield MW-P C-P

Dominguez,  et al.  
2008.

sewage sludge
A81, A0, AN71, and AN0

Temp 1000C
A: Aerobic sludge; 
AN: Anaerobic sludge; 
81: moisture content=81%; 
71: moisture content=71%; 
0: Dried sludge.

Char 59.9 - 57.8 – 57 - 55.3 69.3 – 74.1 – 67.7 – 68.7

Liquid 3.7 – 1.8 – 4 – 2.1 2.4 – 1.6 – 2.1 – 2.3

Gas 36.4 – 40.4 – 39 – 42.6 28.3 – 24.3 – 30.2 - 29

Gas

Product

H2 +CO 94.1 – 92.5 – 87.9 – 87.9  [vol%] 76.2 – 73.3 – 68.8 – 69.6 [vol%]

HC 2.2 – 3.4 – 5.3 – 4.9 [vol%] 12.7 – 15.2 – 15.9 – 17.7 [vol%]

HHV 12.8 – 13.1 – 13.6 – 13.4 [MJ/m3] 15.2 – 16.3 – 16.3 – 17.4 [MJ/m3]

Dominguez, et al.
2007.

coffee hulls 

Temp: 500,  800, and  
1000C

Char 30.2 – 25.5 – 22.7 29.2 – 25.3 – 24.2

Liquid 7.9 – 9.19 – 8.58 13.6 – 11.8 – 11.3

Gas 61.9 – 65.3 – 68.7 57.2 – 62.9 – 64.6

Gas

Product

H2 35.94 – 38.15 – 40.06 [vol%] 9.28 – 25.84 – 29.85 -

CO 25.8 – 29.28 – 32.75 [vol%] 20.62 – 20.87 – 23.05

CO2 28.42 – 22.7 – 17.73 [vol%] 56.58 – 39.14 – 32.08

HHV 12.5 – 14.0 – 15.5 [MJ/m3] 6.6 – 10.5 – 12.7 [MJ/m3]

Domínguez, A., Y. Fernández, et al. (2008). "Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried 
sewage sludge." Chemosphere 70(3): 397-403.

Domínguez, A., J. A. Menéndez, et al. (2007). "Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas." Journal 
of Analytical and Applied Pyrolysis 79(1–2): 128-135.

Selected results showing different products produced by MW-H and C-P
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Authors Material Product Yield-% Extracted Chemicals 

Compound Area-% Wt.% of liquid

Quan Bu, et al. 
2012.

Douglas fir 

+activated 

carbon (AC)a

Liquid 26.97 Phenol 37.72 10.17

Gas 42.97 Phenolics 55.31 14.92

Solid 30.06 Guaiacols 2.42 0.65

Ren, Lei et al. 

2013

Sawdust pellet Liquid b 54 Phenolics 9 4.9

Gasb 19 Guaiacols 51 27.5

Solidb 27 Sugars 3 1.62

Furans 19 10.26 

Hydrocarbons 0 0

Liquid c 39 Phenolics 24 9.36 

Gasc 29 Guaiacols 37 14.43 

Solidc 32 Sugars 8 3.12 

Furans 12 4.68 

Hydrocarbons 4 1.58 

Undri, A., S. Meini, 

et al. (2012). 

waste tiresd Liquid 39.3 Aromatics 29.1 % vol. 12.7 [ml/g]

Gas 9 Paraffins 53.7 % vol. 23.45 [ml/g]

Solid 50.7 Olefins 17.2% vol. 7.51 [ml/g]

Oil density 0.89 [g/ml] 

Oil Viscosity 2.36 [cp]

Oil HHV 43 [MJ/kg]

Solid HHV 34 [MJ/kg]

a623K, 4min, AC to biomass 4:1, 120g, and 700W. b15min,  100g, and 700W, and Without torrefaction.
c15min,  100g, and 700W, and With torrefaction. d3kW, 1501g, 70min; asssume liquid density=1g/cm3

Selected results showing different chemical compounds extracted by MW-H
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5- BIOMASS/WASTE TO VALUE ADDED CHEMICALS

Conventional pyrolysis of lignin (in progress).

Product C-P MW-P

Bio-oil1 
(from 25 to 300oC)

6%

Bio-oil2 
(from 300 to 00oC)

9%

Bio-oil3
(from 400 to 50oC)

19%

Total Bio-oil 34% 37%

Bio-char 23% 38%

Gas 43% 25%

Guaiacol [g/l] 3 23

Phenols  [g/l] 8 20

Generally, the compound extracted by MW-P have a concentration higher than
that by C-H
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CONCLUSION AND  PERSPECTIVES

Electro magnetic wave 
generators

• New Chemical Reactions;
• Drying in multimode;
• MW Pyrolysis;
• Tar Gasification (Microwave Guns);
• At the nozzle feeder
• New  Applications
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CONCLUSION, AND  PERSPECTIVES

Electro magnetic wave 
generators

Heating Chamber
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