Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-11-2013

Hydrodeoxygenation of biofuel-precursors on Nipromoted catalysts

J.F. Cambra Faculty of Engineering (UPV/EHU), Spain

S. Echandia Faculty of Engineering (UPV/EHU), Spain

V.L. Barrio Faculty of Engineering (UPV/EHU), Spain

P.L. Arias Faculty of Engineering (UPV/EHU), Spain

J. Requies Faculty of Engineering (UPV/EHU), Spain

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

J.F. Cambra, S. Echandia, V.L. Barrio, P.L. Arias, J. Requies, M.B. Guernez, B. Pawelec, and J.L.G. Fierro, "Hydrodeoxygenation of biofuel-precursors on Ni-promoted catalysts" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez, Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy_iv/27

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

J.F. Cambra, S. Echandia, V.L. Barrio, P.L. Arias, J. Requies, M.B. Guernez, B. Pawelec, and J.L.G. Fierro

Hydrodeoxygenation of Biofuelprecursors on Ni-promoted catalysts

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels, and Chemicals

> June 9-14, 2013 Otranto (Italy)

S. Echeandía, V.L. Barrio¹, P.L.Arias¹, J. Requies¹, M.B. Güemez¹, B. Pawelec², J.L.G. Fierro², J.F. Cambra¹

 (1) Faculty of Engineering (UPV/EHU), Spain
 (2) Institute of Catalysis and Petrochemistry (CSIC), Spain e-mail: laura.barrio@ehu.es

Overview:

- 1. Introduction
 - **1.1. New alternatives**
 - 1.2. HDO
 - **1.3. Previous results**
- 2. Scope
- 3. Experimental
 3.1. Catalyst preparation
 3.2. Activity tests
- 4. Results & Discussion
 4.1. Phenol HDO
 4.2. HDO of model compounds mixture
 4.3 Used catalysts characterization
- 5. Conclusions

1.1. Introduction. New alternatives

1. Introduction

2. Scope

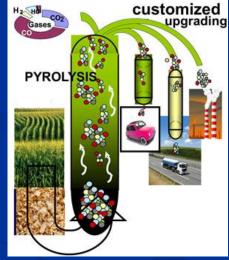
3. Experimental

4. Results & Discussion

Sustainable development :

 \rightarrow Environmentally friendly clean fuels

Biomass:


 \rightarrow Renewable

 \rightarrow Almost CO₂ neutral

 \rightarrow Interesting economic potential

Biofuels: Fuels obtained from biomass pyrolisis route $\eta = 60-70\%$

5. Conclusions

Problem:

 \rightarrow T ype of raw material \rightarrow Process High content of oxygenated compounds: Inmiscibility **High viscosity** Corrosion **Thermal inestability**

1.2. Introduction. HDO

1. Introduction

2. Scope

3. Experimental

4. Results & Discussion

5. Conclusions

+ W

+ Ni

Table 1. Analysis of Biomass Samples Used for Pyrolysis								
	switchgrass ^a	alfalfa-early bud	alfalfa-full flower					
proximate (wt %, db)								
volatile matter	83.41	73.39	75.29					
ash	2.61	8.74	5.83					
fixed carbon	13.98	17.87	18.88					
ultimate (wt %, db)								
C	47.53	44.30	45.97					
Н	6.81	5.43	5.52					
Ν	0.51	2.52	1.60					
S	0.00	0.22	0.088					
Cl	b	0.59	0.41					
0	42.54	38.20	40.58					
^{<i>a</i>} Taken from Boateng et al. ^{4 <i>b</i>} Cl content not determined for switch- grass.								

CH,

Methyl-

cvclopentane

Most frecuently studied catalysts: NiMo/Al₂O₃ and CoMo/Al₂O₃

Hydrogenolysis Reaction route (* OH Benzene **Active carbon** OH Cyclohexene < Phenol Cyclohexane Hydrogenation + Hydrogenolysis **Reaction route (2)** Cvclohexanol

Model compound mixtures

2. Scope

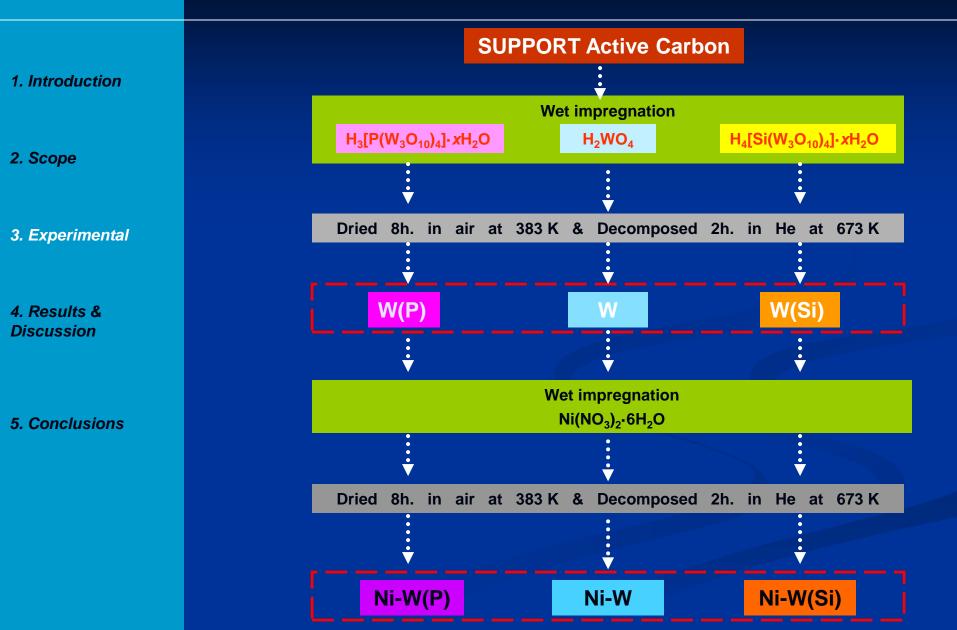
The objectives of this work are:

1. Introduction

2. Scope

3. Experimental

4. Results & Discussion


5. Conclusions

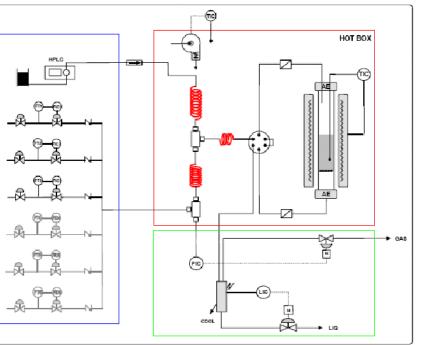
To detect any synergistic effect between Ni and W oxide species supported on activated carbon (AC) when used as hydrodeoxygenation (HDO) catalysts.

To study the effect of different W precursors -silicotungstic (HSiW) and phosphotungstic (HPW) acids- on the activity of Ni-W/AC catalysts.

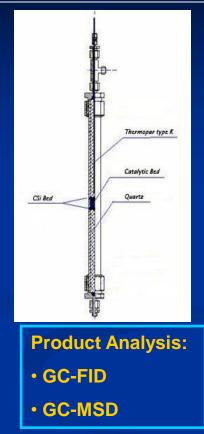
To study the HDO of phenol and of model compound mixtures representative of bio-oil: ethanol, acetone, tetrahydrofuran, phenol and guaiacol.

3.1. Catalysts preparation

3.2. Activity tests


1. Introduction

2. Scope


3. Experimental

4. Results & Discussion

5. Conclusions

Catalyst mass: 0.2 g

Catalysts pre-treatment :

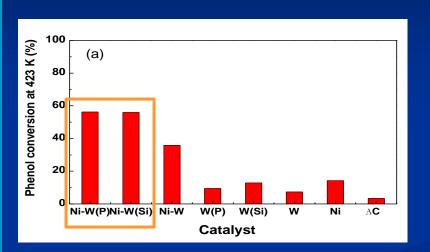
in situ in a 1:3 H_2 :N₂ mixture with a H_2 flow of 2,5 L·h⁻¹ (NTP) at 593 K 0,1 MPa of total pressure

Experimental conditions :

- Temperature in the range 423 523 K and total pressure 1,5 MPa
- Feed: * Phenol 1 wt.%
 - * Model feed consisting of: ethanol, acetone, tetrahydrofuran, phenol and guaiacol (1 wt.% each) in *n*-dodecane as solvent
- H₂:oxygenate compound molar ratio of 100:1

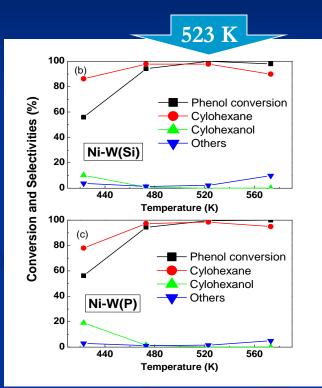
	3.3. Catalysts characterization
d Induction	
1. Introduction	Fresh samples:
2. Scope	o ICP-AES
	0 BET
3. Experimental	○ TPR
4. Results & Discussion	o TPD-NH ₃
	Used samples:
5. Conclusions	o XRD
	o XPS
	◦ HRTEM
	o TGA/DGT

4.1. Phenol HDO


1. Introduction

2. Scope

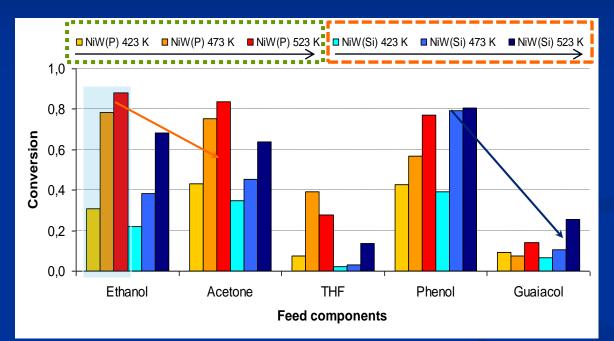
3. Experimental


4. Results & Discussion

5. Conclusions

(a) Comparison of the steady-state phenol conversions of different catalysts in HDO of phenol at T = 423K, P = 1,5 MPa and WHSV = 0,5 h⁻¹.

Ni-W(P) ≈ Ni-W(Si) >> Ni-W >> Ni > W(Si) > W(P) >> W > AC support



Influence of temperature on the phenol conversion and selectivities in the HDO of phenol $(WHSV = 0,5 h^{-1})$ over: (b) Ni-W(Si) catalyst (c) Ni-W(P) catalyst

4.2. HDO of model compounds mixture

Comparison of the <u>conversion</u> of AC-supported catalysts in HDO at different temperatures

(T = 423-523 K, P = 1,5 MPa)

1. Introduction

2. Scope

3. Experimental

4. Results & Discussion

5. Conclusions

4.2. HDO of model compounds mixture

Comparison of <u>the product distribution</u> of AC-supported catalysts in HDO at different temperatures

(T = 423-523 K, P = 1.5 MPa)

2. Scope

3. Experimental

1. Introduction

4. Results & Discussion

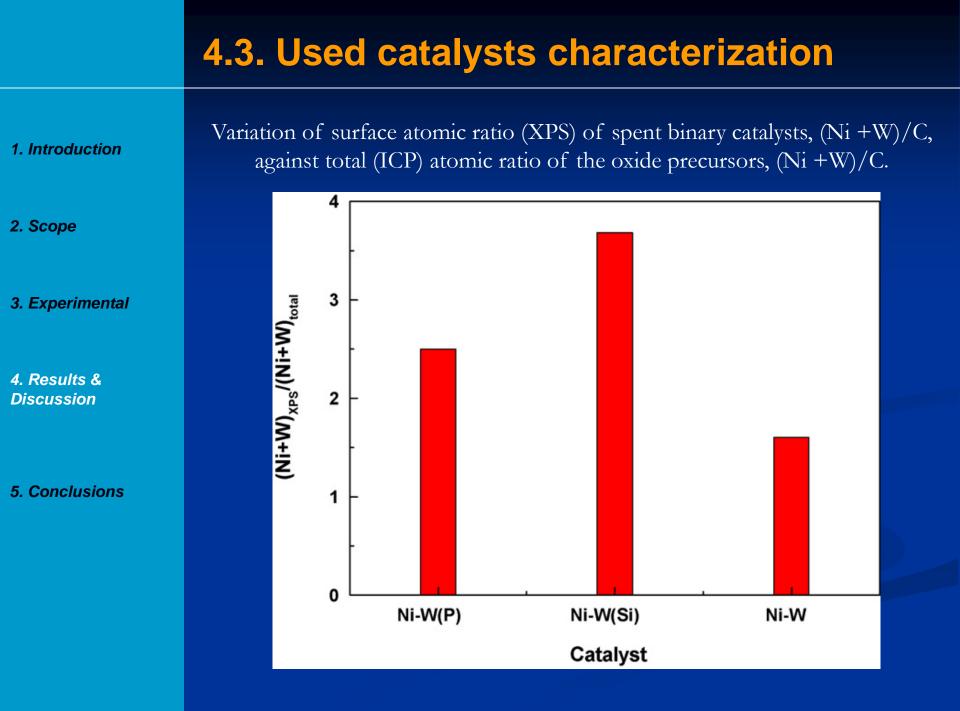
5. Conclusions

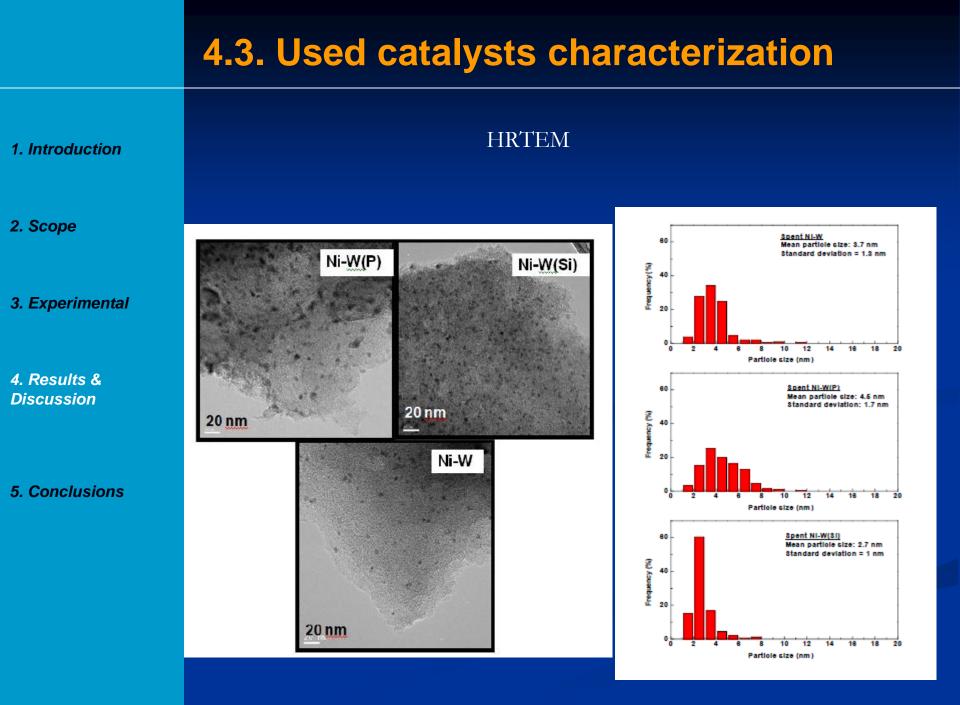
	100	100 NIW(P) NIW(Si)							
*Relative abundance	423K		523 K	4001	(473 K	523 K			
 Ethanol 	8,380	4,70	3,58		7 5,81	4,72			O-containing
2-Ethoxy propane	0,27	0,26			0,34	0,09			- 0 (
 Acetone 	9,88	7,70	6,08		9,05	7,65			■ O-free
 THF 	8,9%	21,12	22,72		22,52	23,83			
Cyclohexane	2,98	9,20	30,18		21,10	28,18			
Cyclohexene	3,08 0	0,28	0,93		0,38	0,55	-		
Cyclohexanol	5,26	6,59	0,86		3,00	0,54			
Cyclohexanone	2 ,270	1,48	0,92		1,85	0,50			
Ethoxy cyclohexane	<u>,</u> ,33	0,40			0,17				
Phenol	14,18	13,41	4,86		3 9,20	3,32			
Decane	<u>.</u> ,33	0,15	0,30						
 Guaiacol 	24,36	31,16	24,54) 26,00	19,84			
Eicosane	20		0,17		0,25	0,25			
Diethyl Phthalate		2,64	0.70		0.50	0.00			
Propane Mothewy others	10		0,72		0,58	0,90			
Methoxy ethane Ethyl ether	0				0.00				
Propoxy benzene			NiW	0,00 (P)	0,28 0,22	0,87 Niv	V(Si)	· · ·	
Butane				Y Y	0,22	0,08	(01)		
Ethyl cyclohexane						0,19			
Ethoxy benzene						0,39			
Undecane	1,64			1,42		-,			
Tridecane	5,57			4,79					
	,		$\overline{\mathbf{v}}$			₽			O-free
			•			•		$\overline{0}$	$\frac{containing}{containing} \ge 10$
			18			12		0.	

4.3. Used catalysts characterization

1. Introduction

2. Scope


3. Experimental


4. Results & Discussion

5. Conclusions

Binding energy (eV) of core electrons and surface atomic ratios of spent catalysts tested in HDO as determined by XPS.

Catalyst	W	Ni 2p	Si 2p, P 2p	Ni/AC at	W/AC at	(Ni+W)/AC at
Ni		853.0 (47) 856.5 (53)		0.0038		- \
W	35.6				0.0047	
W(Si)	35.7		103.1		0.0052	
W(P)	35.7		134.2		0.0048	
Ni-W	35.6	853.0 (30) 856.7 (70)		0.0092	0.0065	0.0157
Ni-W(Si)	35.7	852.9 (20) 856.7 (80)	103.2	0.0183	0.0146	0.0329
Ni-W(P)	35.6	852.9 (28) 856.7 (72)	134.1	0.0127	0.0082	0.0209

5. Conclusions

1. Introduction

2. Scope

3. Experimental

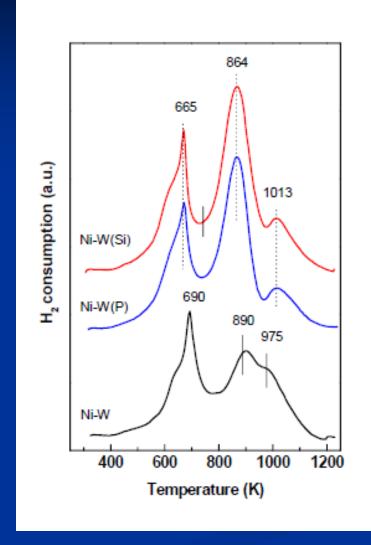
4. Results & Discussion

5. Conclusions

Hydrodeoxygenation was carried out on oxide Ni-W catalysts supported on activated carbon. The main conclusions derived from this work are the following:

The use of non-conventional W precursors (heteropolyacids) allowed the preparation of more active bimetallic hydrotreating catalysts.

Ni-W/AC catalysts are not only good HDS catalysts but also promising candidates for HDO processes. The promoting effect of Ni on W/AC catalysts was measured in the HDO of phenol and of model compounds mixtures.


Analyses of the products indicate that HDO reaction on these catalysts occurs via two separate pathways: one leading to aromatics and the other to cyclohexane, in good agreement with literature.

Using phosphotungstic (HPW) heteropolyacid -as W precursor- more active and stable catalysts are obtained as compared to the silicotungstic (HSiW) heteropolyacid.

Thank you very much for your attention

Norit 1310 m2/g

Catalizador	Ni-W(P)	Ni-W(Si)	Ni-W	W(P)	W(Si)	W	Ni			
Catalizador oxidado										
Ni (wt%)	2,3	2,4	2,6	-	-	-	2.7			
W (wt%)	4,7	5,2	5,8	5,6	5,5	6,0	-			
P or Si (wt%)	0,4	0,7	-	0,4	1,0	-	-			
$S_{BET} (m^2 \cdot g^{-1})$	1099	1071	941	1142	1126	991	1182			
$S_{\mu pore.} (m^2 \cdot g^{-1})$	708	736	604	733	766	610	770			
NS _{BET} [°]	0,91	0.89	0.78	0,92	0,91	0,80	0,93			
d (nm)	2,8	2,8	1,6	2,8	2,8	1,6	2,8			
Catalizador usado										
C (%)	81,7	79,4	81,5	86,9	83,7	86,4	87,5			
H (%)	3,3	2,4	3,2	2,6	1,8	2,9	2,9			
N (%)	0,3	0,3	0,4	0,3	0,3	0,3	0,4			
S (%)	0,2	0,2	0,2	0,2	0,3	0,2	0,3			

