Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-11-2013

A new inductively heated mini reactor for biomass pyrolysis and gasification tests

Cedric Briens **ICFAR**

Mohammad Latifi *ICFAR*

Franco Berruti **ICFAR**

Follow this and additional works at: http://dc.engconfintl.org/bioenergy iv

Part of the Chemical Engineering Commons

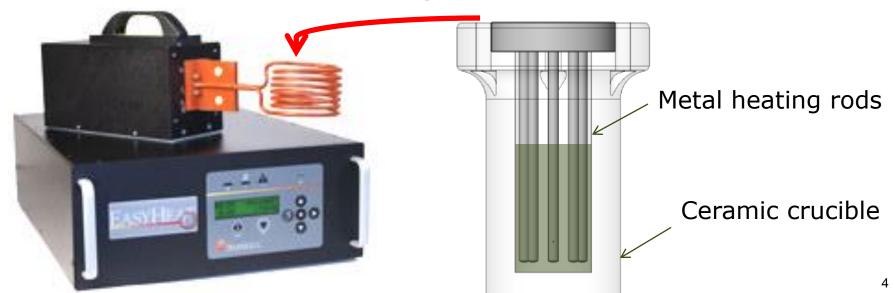
Recommended Citation

Cedric Briens, Mohammad Latifi, and Franco Berruti, "A new inductively heated mini reactor for biomass pyrolysis and gasification tests" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez, Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy_iv/25

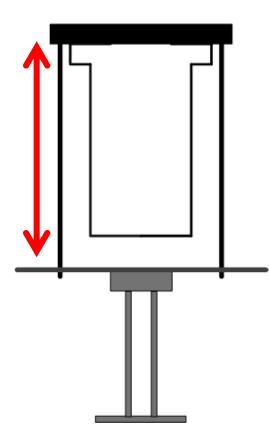
This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

A New Inductively Heated Mini Reactor for Biomass Pyrolysis and Gasification Tests

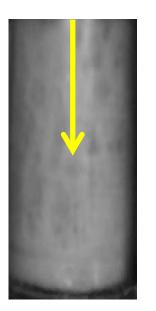
Mohammad Latifi, Franco Berruti, Cedric Briens


> London, Ontario **CANADA**

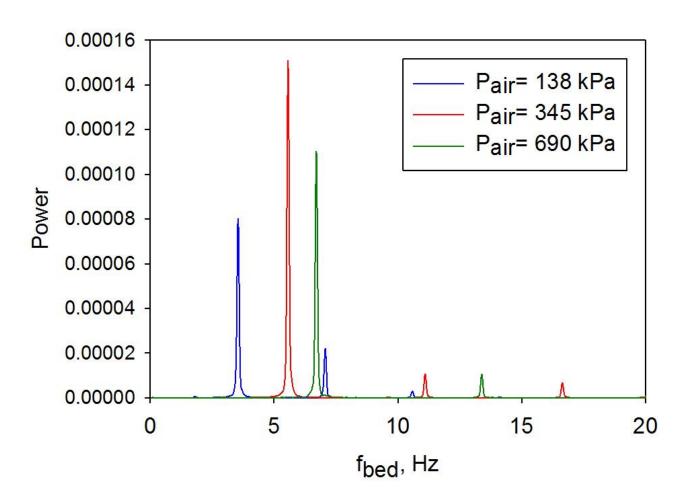
Why a new test reactor?


- Many important catalytic reactions are endothermic e.g.:
 - Catalytic cracking
 - Gasification
- Issues with traditional test reactors:
 - Heat is transferred from the wall into reactor
 - Low heat transfer coefficient:
 - → High temperature gradient
 - → Parasitic thermal cracking reactions
 - Seals for agitator may leak

- Batch reactor
 - → good control of residence time


- Batch reactor
 - → good control of residence time
- Low temperature difference between heating surface and catalyst bed:
 - → induction heating of rods within bed

- Batch reactor
 - → good control of residence time
- Low temperature difference between heating surface and catalyst bed:
 - → induction heating
- No mechanical seal
 - → jiggle bed (up and down motion)


- Batch reactor
 - → good control of residence time
- Low temperature difference between heating surface and catalyst bed:
 - → induction heating
- No mechanical seal
 - → jiggle bed (up and down motion)

Optimum frequency and amplitude

Analysis of color variations

Heat transfer performance

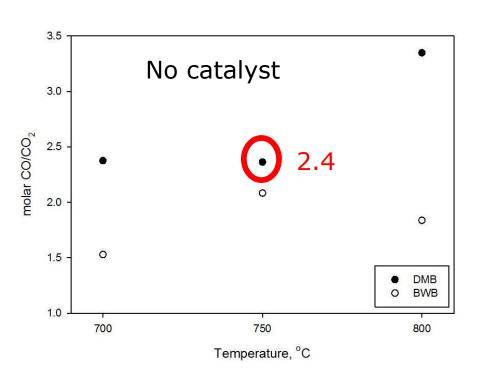
Heat transfer coefficient from metal rods to catalyst bed

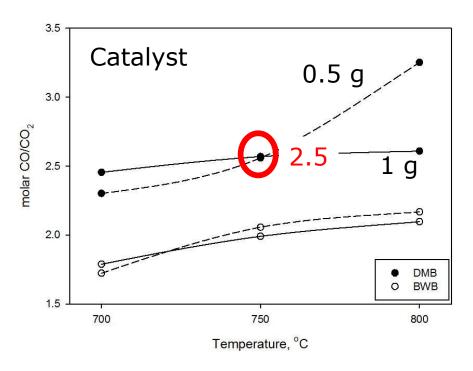
For various conditions:

$h_w\left(\frac{w}{m^2. \ ^{\circ} \ C}\right)$
45
80
220
493

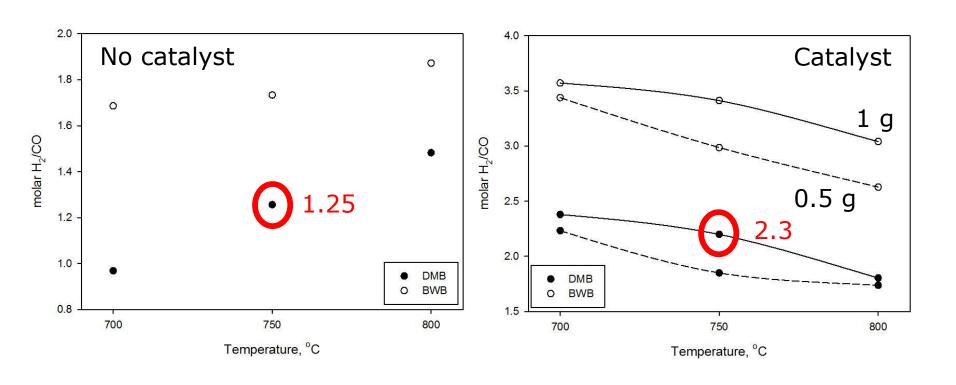
→ similar to what can be obtained in a fluidized bed

Comparison with studies with pilot plant fluidized catalytic reactors

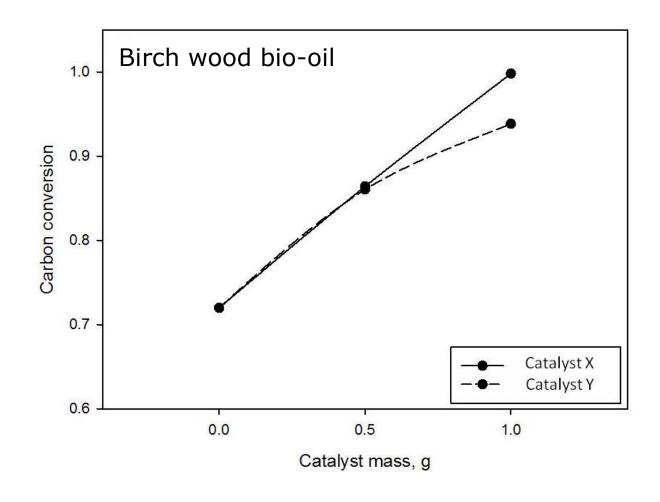

Catalytic cracking of acetic acid


Molar steam to carbon ratio = 6				Molar steam to carbon ratio = 3			
	Catalysts tested by Medrano		This	Catalysts tested by Vagia and			This
	et al. (2009)		study	Lemonidou (2010)			study
Catalyst	Ni/Al, Ca0.5	Ni/Al,Mg0.2	X	5%Ni	10%Ni-1	10%Ni-2	X
H_2	0.84	0.87	0.84	0.88	0.83	0.87	0.78
CO	0.18	0.14	0.17	0.27	0.30	0.31	0.27
CO_2	0.71	0.85	0.79	0.73	0.67	0.69	0.65
CH ₄	0.00	0.00	0.04	0.00	0.03	0.00	0.06
$C_2H_4+C_2H_6$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Conversion	0.90	0.99	1.00	1.00	1.00	1.00	1.00

→ excellent agreement between JBR results and pilot plant fluidized beds


- Bed:
 - 10 g of sand (106-220 µm)
 - commercial catalyst (two catalysts were tested)
- Liquid feedstock:
 - 4 µl injected
 - Two types of bio-oils from wood pyrolysis:
 - Oak bio-oil produced by Dynamotive (DMB)
 - Birch wood bio-oil produced at 475 °C at ICFAR (BWB)

30 s residence time



30 s residence time

800 °C, 30 s residence time

Conclusions

- The jiggle bed reactor:
 - effective batch micro reactor for catalyst testing
 - convenient
 - ideal for endothermic reactions
- Simulates typical fluidized bed reactors

