Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-11-2013

Gasification of a municipal solid waste in a pilot scale bubbling fluidized bed reactor

Umberto Arena Second University of Naples

Fabrizio Di Gregorio Second University of Naples

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Umberto Arena and Fabrizio Di Gregorio, "Gasification of a municipal solid waste in a pilot scale bubbling fluidized bed reactor" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez, Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy_iv/17

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

BioEnergy IV

Innovations in Biomass Conversion for Heat & Power, Fuels and Chemicals June 9-14, 2013 Basiliani Resort, Otranto, Italy

GASIFICATION of a MSW in a PILOT SCALE BFB REACTOR

of environmental risk

Umberto ARENA and Fabrizio DI GREGORIO

Department of Environmental Sciences and Technologies - SUN AMRA - Analysis and Monitoring of Environmental Risk The Framework and the Scope of the Study

Main Goals of a Waste Management System

i) Protection of human health and the environment, than reduction of emissions, monitoring of toxicological effects and minimization of health risks, minimization of GHSs;

ii) Conservation of resources, such as materials, energy, and land;

iii) After-care-free waste management, meaning that neither landfills nor WtE, recycling or other treatments leave problems to be solved by future generations;

iv) Economic sustainability of the whole cycle of MSW management, also in a welfare economy perspective.

Waste Management Guidelines

i) Efficient service of collection and disposal,*ii)* Minimization of Landfill Option, which is becoming crucial due to the continuously reducing space for sanitary landfills;

iii) Minimization of Operations Entailing Excessive Consumption of raw materials and energy without yielding an overall environmental advantage;

iv) Maximization of Material Recovery, albeit in respect of the previous point;

v) Maximization of Energy Recovery from materials that cannot be efficiently recycled, in order to save both landfill volumes and fossil-fuel resources.

A Sustainable WM system

Role of WtE in a sustainable WM system

- 1. <u>Reduction of mass and volume of waste</u>, therefore preserving landfill space;
- 2. <u>Sustainable energy recovery</u> from the solid waste stream;
- **3. Recovery of material from solid residues;**
- 4. Destruction of a number of organic contaminants present in the waste stream;
- **5. Reduction of greenhouse gas emissions** with respect of anaerobic decomposition in landfills;
- 6. Separation of inorganic components from the organic fraction, so allowing reuse or inertization and preventing dispersion and accumulation of hazardous constituents in the environment and recycled products.

Types of WtE processes

Taxonomy of gasification technologies

Criteria	Types
Heat supply	 auto-thermal (directly heated) allo-thermal (indirectly heated)
Temperature	 low-temperature (typically below 900°C) high-temperature (typically above 1200°C)
Gasification agent	 air oxygen enriched-air oxygen steam
Number of treated fuels	 gasification co-gasification
Reactor type	 fixed bed: up-draft ; down-draft; shaft furnace fluidized bed: bubbling, circulating, internally circulating, dual rotary kiln moving grate plasma: single and double stage
Bottom ash status	 dry bottom ash vitrified slag (melting system)
WtE configuration	 heat gasifiers power gasifiers

Scope

 to assess the technical feasibility of a BFBG able to treat 5000 t/y of a SRF obtained from a sorting process of MSW.

To this end, a number of tests were carried out in a pilot scale BFBG. The experimental data were processed by mass and energy balances, in order to obtain information useful to define design solutions and a suitable plant configuration for energy generation.

The FluGas reactor

Geometrical parameters

• -

ID: 0.381m; total height: 5.90m; reactive zone height: 4.64m; wall thickness:12.7mm

Feedstock capacity	100 kg/h
Thermal output	up to about 400kW
Typical bed amount	145 kg
Feeding system	over-bed air-cooled screw feeder
Gasifying agents	Air (but also: oxygen, steam, carbon dioxide)
Range of bed temperatures	700-950°C
Range of fluidizing velocities	0.3-1m/s
Flue gas treatments	cyclone, scrubber, flare
Safety equipments	water seal, safety valves, rupture disks, alarms, nitrogen
	line for safety inerting

The materials tested

	Ultimate analysis, % _{wt. ar}				
	С	41.	2-45.4		
	Н	6.	0-6.5		
	Ν	0.6	6-0.70		
	S	0.	1-0.3		
	Cl	0.1-0.2			
	O (by diff.)	22.9-24.2			
	Moisture	3.7-9.1			
	Ash	18.	5-20.4		
	Heating value, MJ/kgfuel, ar				
	LHV	16,60	0-19,200		
Olivine			Mg-Fe	silicat	e
Cł	nemical composition, %				
		SiO ₂	39	-42	
		MgO	48	-50	
		Fe ₂ O ₃	8- 1	L0.5	
		CaO	<	0.4	
		K ₂ O		-	

Chemical composition, %			
SiO ₂	39-42		
MgO	48-50		
Fe ₂ O ₃	8-10.5		
CaO	<0.4		
K ₂ O	-		
TiO ₂	-		
Al ₂ O ₃			
<i>Cr</i> ₂ <i>O</i> ₃	0.8		
Mg ₃ O ₄			
LOI (loss of ignition)	0.20		
Size range, μm	200 ÷ 400		
Sauter mean diameter, μm	298		
Particle density, kg/m ³	2900		

The experimental procedure

time, min

Syngas composition

Process performance

Plant configuration: gasification section

The experimental activity carried out with the pilot scale BFB gasifier indicates that it is not easy to obtain an efficient and sustainable cleaning of the syngas. A "heat gasifier" configuration has been adopted, where the syngas is directly burned and the flue gases are then cleaned.

Parameters of the proposed BFB reactor

Nominal net electric power output	400 kWe
Annual SRF throughput	5000 t/y
BFBG internal diameter	1.4 m
BFBG height	4.0 m

Plant configuration: syngas combustion section

A mild combustion system has been proposed for syngas burning. The process occurs with a remarkable dilution of fuel and oxidizer, which are both locally mixed with a "ballast" of inert gases before they react. As a consequence, the ranges of T and concentration result remarkably different from those of standard combustion processes.

Plant configuration: syngas combustion section

Source: Milani and Saponaro, 2001

Plant configuration: energy generation section

ORC turbine included in the proposed configuration		
Thermal input	2400 kWt	
Diathermic fluid	Thermooil	
Inlet temperature (base load)	300°C	
Outlet temperature (base load)	250°C	
Organic fluid	Silikon oil	
Thermal output (condenser)	1600 kWt	
Cooling fluid	water	
Inlet temperature (base load)	60°C	
Outlet temperature (base load)	80°C	
Net Electric Power output (base load)	400 kWe	
Net electric efficiency (base load)	17.7%	

Plant configuration: process flow diagram

16

nda

Conclusions

• A gasification based, small-scale waste-to-energy plant, having a nominal throughput of 5000 t/y of a Secondary Recovered Fuel obtained from unsorted residual waste, has been investigated.

• The technical performances of a heat gasifier configuration of this plant have been quantitatively assessed. Mass and energy balances of the proposed plant were based on the experimental data obtained from a pilot scale bubbling fluidized bed air gasifier.

Conclusions

• An innovative mild combustion system has been pro posed to burn the syngas and has been coupled with an Organic Rankine Cycle generator.

• The results, together with those of a preliminary economic analysis, indicate that <u>the proposed plant configuration</u>, including a bubbling fluidized bed reactor, a mild combustion system, a 400kWe ORC generator and a simple air pollution control system, <u>appears fully sustainable</u>.

THANK YOU for your kind attention