Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-10-2013

Production of bio-coal from biomass in a Mechanically Fluidized Reactor (MFR)

Anastasia Colomba **ICFAR**

Franco Berruti **ICFAR**

Cedric Briens **ICFAR**

Follow this and additional works at: http://dc.engconfintl.org/bioenergy iv

Part of the Chemical Engineering Commons

Recommended Citation

Anastasia Colomba, Franco Berruti, and Cedric Briens, "Production of bio-coal from biomass in a Mechanically Fluidized Reactor (MFR)" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez, Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy_iv/14

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Western University

Production of bio-coal from biomass in a Mechanically Fluidized Reactor (MFR)

Anastasia Colomba, Franco Berruti and Cedric Briens

Institute for Chemicals and Fuels
From Alternative Resources (ICFAR)
Western University, London, Ontario
CANADA

Objectives

Explore the extent to which biomass can be upgraded to bio-coal:

- Biologically stable
- Hydrophobic behavior
- Higher calorific value
- Friable for use in pulverized coal boilers

Objectives of this study

- Create a database of biomass and products characteristics
- Comparison of different torrefaction technologies
- Identify potential feedstocks for fuel production

Biomass selection

Energy crops	Crop residues	Energy crops seeds	Milling residues
Willow	Wheat Straw	Sorghum	Olive Residue
Miscanthus	Corn Stover	Sunflower Husks	Bagasse
Switchgrass	Canola Straw		

Biomass selection

Energy crops	Crop residues	Energy crops seeds	Milling residues
Willow	Wheat Straw	Sorghum	Olive Residue
Miscanthus	Corn Stover	Sunflower Husks	Bagasse
Switchgrass	Canola Straw		

Feedstocks used in this work

Institute for Chemicals and Fuels

ICFAR Mechanically Fluidized Reactor (MFR)

ICFAR Mechanically Fluidized Reactor (MFR)

Yields- comparison with different reactors at 260 °C

Yields – comparison with different reactors at 300 °C

Energy recovery

Interesting observations

Sorghum seeds "pop" at higher temperatures ---- problems with the stirrer

Institute for Chemicals and Fuels from Alternative Resources

Western University **Western University**

Hygroscopicity

from Alternative Resources

Western University

Hygroscopicity

Evaluated after 21 days in a saturated atmosphere at 15°C

Interesting observation – Hygroscopicity

Bacteriological activity after 21 days in a saturated atmosphere:

- raw sunflower husks
- raw sorghum seeds

Prevented with torrefaction!

Institute for Chemicals and Fuels

Grindability

Reduction up to 90% in the power consumption for grinding after torrefaction

Grindability

Torrefied at 260° C

Torrefied at 300° C

Destruction of sunflower husks at higher temperature

no need for further grinding?

Key conclusions

- Suitability of the MFR for torrefaction
- ▶ Torrefaction for 15 minutes at 300 °C
 - Upgrades biomass in terms of hygroscopicity, biological stability and grindability
 - Removes the hemicellulose (confirmed by rehydrolyzing the sample and FT-IR spectra)

Future work

- ▶ Bio-coal:
 - Comparison with bio-coal produced in continuous MFR
 - Production of large quantities of bio-coal for combustion testing
 - Predictive correlations in terms of product performance
- Production and testing of bio-char for:
 - Soil amendment
 - Activated carbon

Acknowledgments

ICFAR technical staff

CEATI International Inc.

