#### Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-10-2013

## Low temperature co-pyrolysis of polypropylene and coffee wastes to fuels

Paolo Canu Dept. of Industrial EngineeringUniversity of Padua

Elena Zanella Dept. of Industrial EngineeringUniversity of Padua

Micol Della Zassa Dept. of Industrial EngineeringUniversity of Padua

Luciano Navarini Dept. of Industrial EngineeringUniversity of Padua

Follow this and additional works at: http://dc.engconfintl.org/bioenergy\_iv Part of the <u>Chemical Engineering Commons</u>

#### **Recommended** Citation

Paolo Canu, Elena Zanella, Micol Della Zassa, and Luciano Navarini, "Low temperature co-pyrolysis of polypropylene and coffee wastes to fuels" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez,Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy\_iv/13

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

# Low temperature co-pyrolysis of polypropylene and coffee wastes to fuels

Elena Zanella, Micol Della Zassa, Luciano Navarini, Paolo Canu





Dept. of Industrial Engineering University of Padua (Italy) illycaffè s.p.a. Trieste, Italy

## Motivation

Coffee in capsules



- espresso with standard machines
- Optimal coffee flavor extraction and cream/foam production



• Large amount of poorly accepted waste

 $\rightarrow$ 

### valuable products?





### PP structure + Coffee (and a thin paper filter)



59% PP out of 16 g total, 37 mm high

## Experimental approach



- 1. Orientation by TA DSC of single components and mixtures  $\rightarrow$  **pyrolysis conditions**
- 2. Set-up and characterization of a pyro reactor (fixed bed)
- 3. Tests
  - PP/coffee
  - T
- 4. Liquids product analysis (GC-MS)

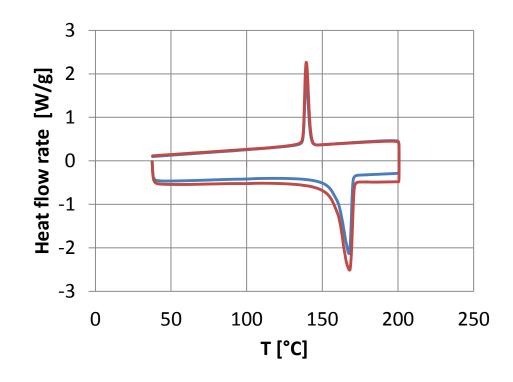
## Materials





### Isotactic PP (virgin)




### Coffee ground

### Singles components, to investigate composition



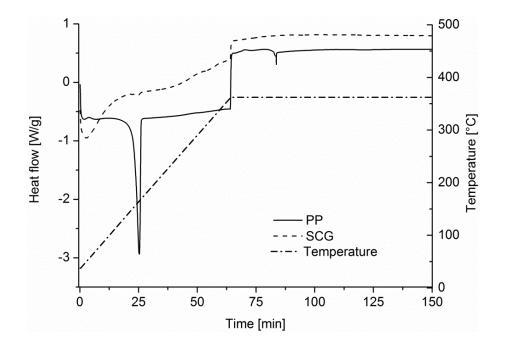
# Thermal Analysis DSC

1 - PP characterization (2°C/min)



 $T_{m} = 167^{\circ}C$ 

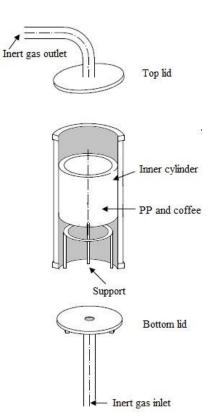
 $\Delta H_{\rm m} = 2.9 \text{ kJ/mol}$ 


$$\alpha = 33\%$$

P.Canu - UniPd /Illy



# Thermal Analysis DSC


2 – decomposition (in air or inert)



Degradation of **coffee** Degradation of **PP**  T> 250 °C T> 360 °C

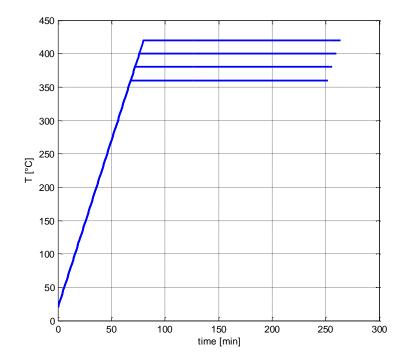
## Pyrolysis Reactor upflow fixed bed







from mg to tens of g (ID = 38mm)


### products condensation @ 65, 25,-20 °C

#### P.Canu - UniPd /Illy

#### BioEnergy IV - June 2013

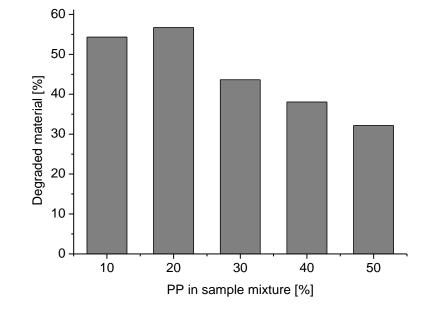
# Heating policy 'isothermal'





HR =  $5^{\circ}$ C/min 3h at max T (360, 380, 400, 420°C)

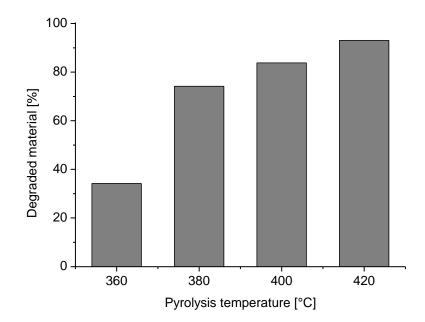



# Experimental design % and T effect

|       | #<br>test | Composition<br>[% vol] |        | T<br>[°C] | WL<br>[%] | liquid<br>yield<br>[% wt] |
|-------|-----------|------------------------|--------|-----------|-----------|---------------------------|
|       |           | РР                     | coffee |           |           |                           |
| set 1 | 1         | 10                     | 90     | 360       | 54.3      | 34.9                      |
|       | 2         | 20                     | 80     | 360       | 56.7      | 29.0                      |
|       | 3         | 30                     | 70     | 360       | 42.9      | 27.6                      |
|       | 4         | 40                     | 60     | 360       | 38.1      | 26.3                      |
|       | 5         | 50                     | 50     | 360       | 34.0      | 25.6                      |
| set 2 | 6         | 50                     | 50     | 360       | 34.2      | 25.6                      |
|       | 7         | 50                     | 50     | 380       | 74.2      | 42.0                      |
|       | 8         | 50                     | 50     | 400       | 83.8      | 63.7                      |
|       | 9         | 50                     | 50     | 420       | 93.1      | 71.7                      |

Set 1: PP from  $10 \rightarrow 50\%$  @ 360°C Set 2: T from 360  $\rightarrow$  420°C @ 50% PP/coffee

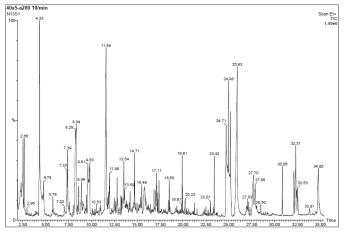



# Feed composition overall degradation

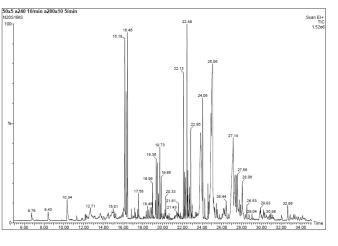


@ 360°C the fraction of PP severely limits degradation




## Temperature overall degradation




@ 50/50% the temperature dramatically supports degradation





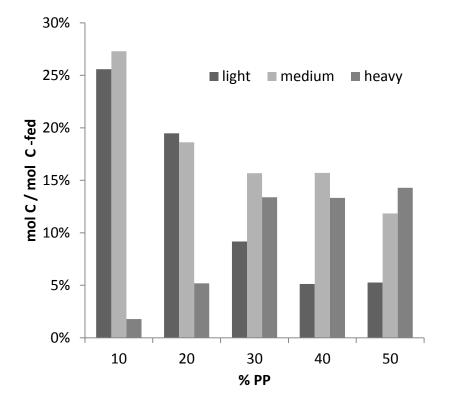


80% coffee



50% coffee

- Linear HCs
- Low MW aromatics and eterocycles
- linear alcools  $C_{12}$ - $C_{13}$  and groups of isomers
- water <4% (coffee dependent)


# Products clustering of products

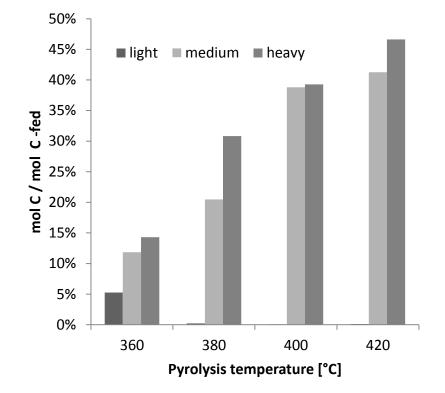


|        | C atoms            | Elution time          |
|--------|--------------------|-----------------------|
| Light  | < C <sub>6</sub>   | < 12 min              |
| Medium | $C_6$ and $C_{16}$ | between 12 and 26 min |
| Heavy  | > C <sub>16</sub>  | > 26 min              |

### Common classification Rough but effective

# Feed composition yield by groups




more PP → products shift to higher MW @360°C PP yields mostly high MW products



#### P.Canu - UniPd /Illy



## Temperature yield by groups



Light species degrade to gas (char might help)

## Conclusions



- 1. The degradation of coffee anticipates PP
- 2. Higher coffee/PP  $\rightarrow$  lower MW of the products, larger conversion
- 3. T> 360°C affects the PP degradation, while products of coffee degradation is believed to support its cracking
- 4. Products vs. fossil fuels: similar: Aliphatic HCs and aromatics,  $C_{14} - C_{30}$ different: oxigenated and acids species

## Issues worth exploring



- 1. a 'fractional' pyrolysis of biomass/PP, at 2 T's
- Effect of HR on the distribution of products
  Interactions of melt polymer and non-wettable biomass
  → modelling
- 3. Characterization of gas, for energy balance



## Thank you for the attention!

### Keep drinking good coffee



