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Pyrolysis

Fluidised bed pyrolyser 
(temperature 300-600 °C)

Gases: 
most commonly 
detected gas species 
are CO, CO2, CH4, 
CH2O, CH3CHO, 
H2O, H2

Bio-oil:
Phenolic oily fraction 
and carbohydrate-rich 
water fraction

Bio-char: 
carbon and ashes 

Lignin









Mechanical Stirrer

Mechanical Stirrer

No mixer: 200g 
of lignin fed 

Mixer: 80 rpm 
200g of lignin fed 
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Lumping of Multi-Component Reactive Mixtures

• Substitute to the real mixture an equivalent one of (fewer) 
“pseudo-component” which mimics more or less exactly the 
behaviour of the real mixture

– DISCRETE Lumping

• Interest only in “global” quantities (which are usually the only 
accessible to measurement)

– CONTINUUM Lumping



Thermal Degradation (Pyrolysis)
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Modelling
Discrete lumping kinetics for pyrolysis of lignin

Model 1

Lignin decomposition is described by three parallel reaction.

The reaction rate constants of these reactions can be determined by
measuring the amount of each lump as a function of time.



Discrete lumping kinetics for pyrolysis of lignin
Model 2



Models results

Discrete model 1 (better suited for the FB without mixing)
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Models results

Discrete model 2
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Applying the CL to the fractionation of bio-oil

 Label the species

 Devise the kinetic model

 Write the governing equations (mass balance)

 Calculate the lumped concentration

 Calculate the lumped rate of reaction



Model Formulation

 The mass balance (model) for generic component of reactivity k is:

 First order kinetics is assumed in agreement with a number of papers 
in the field (e.g. Ho, 2008)





max

)(),(),(),(
),(

k

k

dKKDtKKcKkptkkc
dt

tkdc

Production  from all the 

components with a higher 

reactivity

Disappearance



Model Results (short residence time)



Kinetic parameters for the pyrolysis of lignin

T (◦C) KG KT Kc

450 1.8 11.2 16.5

500 2.6 12.0 14.7

550 3.0 14.3 12.5

600 4.4 13.3 11.8

Reaction 
Rate
Constant

Frequency 
Factor (s-1)

Activation 
Energy (J/mol)

KG 69.9 35756

KT 15.0 11785

KC 1.6 7560



Continuum Modelling



Parameters of the Continuum Model (bio-oil)



Future Work

 Further model validation

 Feed distribution function to link the CL to the DL to
generate a “complete” model (the species-type distribution function,

D(k), “contains” the kinetics and it is a characteristic of the feed only)
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Conclusions

 Discrete lumping models predict well the yields observed in FB
and MF bed reactors

 The continuum model is shown to be appropriate to predict
the cracking (upgrading) of bio-oil in a catalytic reactor
(utilising methodologies and lessons borrowed from the fossil fuel
industry)
 Much less analytical support required (when compared with

mechanistic models) –smaller number of model parameters
 Effectively used for rapid catalyst screening/evaluation (new

catalysts?)

 Polymerisation (CL)

 Monomers  Oligomers (CL)





Labelling the Components

 Identify a label which can be attributed univocally to “a” species –x

 The concentration c(x,t) is the concentration at time t of the species 
in the interval (x, x+dx)

dxxhCxc )()( 0

With C0 the lumped initial concentration (at t=0) and  h(x,) a distribution 

function which is normalised to assure mass conservation:
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Labelling the Components

 The label is the molecular weight, n(i)

 The normalised molecular weight can be defined with respect the 
highest, n(h) and the lowest n(l) molecular weight:

 The concentration of the generic component i can then be expressed 
as:

 Assume that the molecular weight is univocally related to the 
reactivity, the relation between q and k being monotonic:
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The Yield Function

 p(k,K) has to be zero when k=K (the species of reactivity k
cannot yield to itself upon cracking)

 p(k,K)=0 for k>K since net polymerisation is not significant 

 p(k,K) has to satisfy a material balance

 p(k,K) should be a finite, small nonzero value when k=0 (this 
property is a consequence of the experimentally observed fact 
that, when a component of reactivity K cracks, even the smallest 
reactivity components are formed in traces)

 p(k,K) should always be positive



Model Formulation

 The term:

 is the yield distribution function and needs to have the 
shape of a skewed Gaussian. It contains three parameters that 
determine the peak location and constraint the distribution to 
verify the total mass balance. 
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