Engineering Conferences International ECI Digital Archives

BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals

Proceedings

Spring 6-10-2013

Catalytic pyrolysis of forest thinnings in a circulating fluidized bed reactor

Ville Paasikallio VTT Technical Research Centre of Finland

Christian Lindfors VTT Technical Research Centre of Finland

Anja Oasmaa VTT Technical Research Centre of Finland

Jani Lehto VTT Technical Research Centre of Finland

Eeva Kuoppala VTT Technical Research Centre of Finland

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Ville Paasikallio, Christian Lindfors, Anja Oasmaa, Jani Lehto, Eeva Kuoppala, and Yrjo Solantausta, "Catalytic pyrolysis of forest thinnings in a circulating fluidized bed reactor" in "BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals", Manuel Garcia-Perez, Washington State University, USA Dietrich Meier, Thünen Institute of Wood Research, Germany Raffaella Ocone, Heriot-Watt University, United Kingdom Paul de Wild, Biomass & Energy Efficiency, ECN, The Netherlands Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/bioenergy_iv/3

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Ville Paasikallio, Christian Lindfors, Anja Oasmaa, Jani Lehto, Eeva Kuoppala, and Yrjo Solantausta

Business from technology

Catalytic pyrolysis of forest thinnings in a 20 kg/h circulating fluidized bed reactor

ECI Bioenergy IV, June 10th 2013, Otranto, Italy <u>Ville Paasikallio</u>, Christian Lindfors, Anja Oasmaa, Jani Lehto, Eeva Kuoppala, Yrjö Solantausta VTT Technical Research Centre of Finland

From conventional to catalytic fast pyrolysis

- More than 40 tonnes of pyrolysis oil produced in VTT's Process Development Unit since 1996
- 50 000 t/a industrial scale-up in process in Finland
- Replacing the sand with a solid catalyst
- How challenging can it be?

Quite challenging.

Background

- Catalytic pyrolysis a way to produce pyrolysis oil with improved fuel properties
- Most of public experimental work limited to laboratory and bench scale with limited time spans
- Catalyst deactivation and regeneration a major issue for continuous operation
- A circulating fluidized bed (CFB) reactor offers both possibilities and challenges

Operation in a CFB reactor – what to expect?

- Coke deposition no longer a problem
- More interdependency between process variables
 - \rightarrow Less freedom in process control
- Short contact time between catalyst and pyrolysis vapors
- Continuous regeneration of the catalyst effect of temperature and biomass alkalis?
- Mechanical integrity of the catalyst

Materials and operating conditions

- Finnish forest thinnings feedstock – a mixture of softwood and hardwood
- Spray-dried ZSM-5 catalyst from Zeolyst International SiO₂/Al₂O₃ = 280

- Pyrolysis temperature 480-500°C
- Regeneration temperature 650-680°C
- Biomass feedrate 20 kg/h, catalyst 120-140 kg/h
- Fluidization velocity 6 m/s
- Scrubber temperature 40-50°C

6

Product distribution

Stage	Reactor (°C)	Organics	Water	Gases	Char/coke
1	480	36	16	14	34
2	480	37	15	14	34
3	500	42	13	13	33

- Yield of organics typically 50-55 wt-% in non-catalytic fast pyrolysis
- Use of catalyst slightly increased water/gas yields
- High yield of char/coke
- Product distribution suggests possible catalyst deactivation

Pyrolysis oil physical properties

	Reference	Stage 1	Stage 2	Stage 3
	As received	As received	As received	As received
Water, wt%	24.4	33.3	27.2	24.4
рН	2.7	2.5	2.7	2.6
TAN, mgKOH/g	102	106.6 103.8		104
Solids, wt%	0.01	0.41	0.46	0.39
MCR, wt%	18.1	16.4	19.0	20.0
Ash, wt%	0.02	0.17	0.22	0.23
Viscosity, cSt, 40°C	14	-	15	18
Density, kg/l, 15°C	1.200	1.155	1.181	1.192
	Dry basis	Dry basis	Dry basis	Dry basis
HHV, MJ/kg	22.4	24.0	23.7	23.6
LHV, MJ/kg	20.1	21.4	21.4	21.5
C, wt%	54.6	57.0	56.7	56.3
H, wt%	6.8	6.1	6.3	6.0
N, wt%	0.3	0.1	0.3	0.3
O, wt%	38.3	36.8	36.7	37.3

- → Very little change compared to non-catalytically produced pyrolysis oil
- → Are there any changes in the chemical composition?

8

Pyrolysis oil chemical composition

он он он он

- Levoglucosan converted into other oxygenates
- Some aromatic hydrocarbons present
- Sugar type compounds decreased

Relatively small changes here as well – what about the catalyst?

Catalyst characterisation: Specific surface area

- Fresh catalyst 193 m²/g, calcined catalyst 163 m²/g
- Surface area loss during initial heat-up phase and pyrolysis phase
- No notable carbon build-up on catalyst

Catalyst characterisation: Metal content

Sample	K (wt-%)	Na (wt-%)	P (wt-%)	Ca (wt-%)	Mg (wt-%)	Sum of alkalis (wt-%)
Fresh	0.01	0.01	< 0.05	< 0.05	< 0.05	0.02
Pyrolysis start	0.04	0.01	< 0.05	0.07	< 0.05	0.11
57 h	0.51	0.04	< 0.05	0.50	0.10	1.15
97 h	1.59	0.05	0.75	2.05	0.50	4.94

Does alkali deposition appear to cause pore blockage?

No observable linear correlation.

Catalyst characterisation: Acidity

Clear change in NH₃-TPD spectra, how does this compare to alkali content?

Catalyst characterisation: Acidity

- Overall catalyst acidity decreases during experiment
- Alkalis might deposit on Brønsted acid sites without blocking the catalyst pores

Catalyst characterisation: X-ray diffraction

- 1. Decrease in ZSM-5 peak intensities
- 2. Disappearance of kaolinite peaks
- 3. Disappearance of silicalite peak and appearance of quartz peak

14

Summary

- VTT's 20 kg/h PDU operated smoothly with a spray-dried ZSM-5 catalyst
- Catalytic pyrolysis in a CFB reactor is not as simple as just replacing the sand with a catalyst
- Process conditions have to be chosen carefully to increase the effectiveness of the catalyst
- Catalyst properties change in a five day experiment
- Catalyst activity and lifetime are major issues

15

Acknowledgements

- Funding: Tekes, The Finnish Funding Agency for Technology and Innovation
- Experimental work: Sampo Ratinen, Pekka Saarimäki, Jouko Kukkonen, Jarmo Juuti, Ilkka Isoksela, Joni Rantala
- Pyrolysis oil analytics: Arvind Verma, Jaana Korhonen, Sirpa Lehtinen, Elina Paasonen
- Catalyst characterisation: Juhana Ruotoistenmäki, Matti Reinikainen, Kaija Luomanperä, Pertti Koskinen

VTT creates business from technology

