Engineering Conferences International ECI Digital Archives

Vaccine Technology IV

Proceedings

Spring 5-23-2012

Microbial fermentation: New tools to speed-up vaccine antigen development and increase process knowledge

Catherine Jourdat Sanofi Pasteur

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Catherine Jourdat, "Microbial fermentation: New tools to speed-up vaccine antigen development and increase process knowledge" in "Vaccine Technology IV", B. Buckland, University College London, UK; J. Aunins, Janis Biologics, LLC; P. Alves, ITQB/IBET; K. Jansen, Wyeth Vaccine Research Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/vaccine_iv/30

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Microbial fermentation: New tools to speed-up vaccine antigen development and increase process knowledge

Catherine Jourdat Sanofi Pasteur Bioprocess R&D Upstream platform Vaccine technology IV May 23rd 2012, Albufeira, Portugal

SANOFI PASTEUR : The vaccines division of SANOFI group

World leader in vaccines

- 20 diseases
- More than 1 billion doses/year
- More than 500 million people vaccinated/year
- 13 vaccines in development(1)
- Nearly 13,000 employees(2)

• 12 production/R&D sites in the world

- France (Marcy l'Etoile and Val de Reuil)
- US (Swiftwater, Cambridge, Canton, Orlando and Rockville)
- Canada (Toronto)
- Argentina (Pilar)
- China (Shenzhen)
- India (Hyderabad)
- Thailand (Chachoengsao)

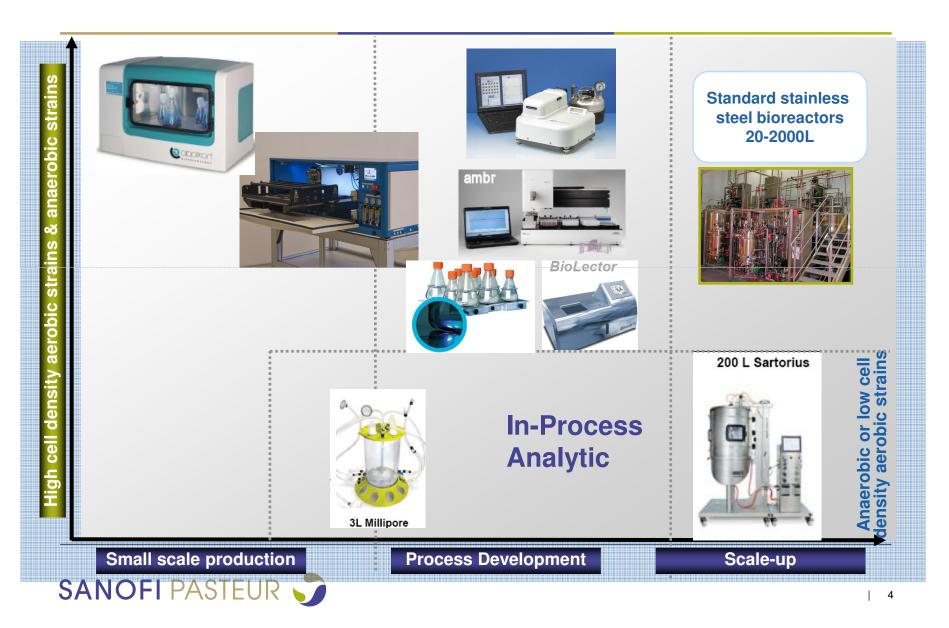
And 3 new facilities under construction: Mexico (Ocoyoacac), France (Neuville) and China (Shenzhen)

- 1. As of July 28, 2011, from phase I to "submitted"
- 2. FTEs as of December 2010 Vaccines activities

MARCY L'ETOILE, OUR VACCINES

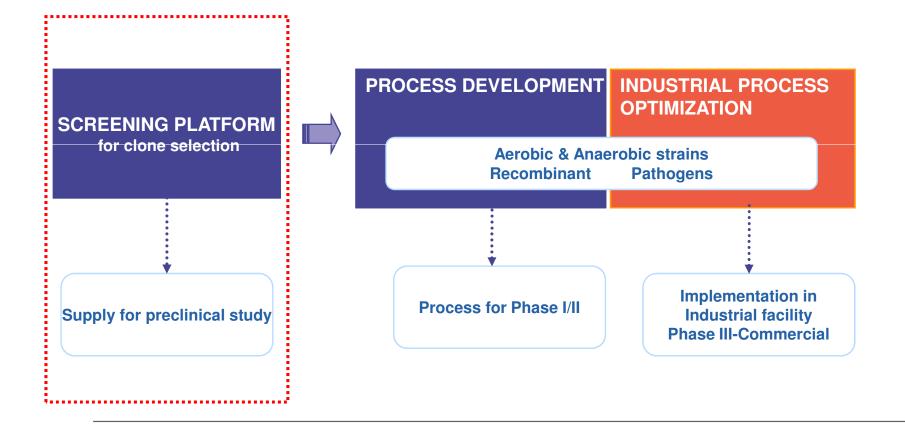
Viral diseases

The site manufactures vaccines against 11 of the 20 diseases that Sanofi Pasteur's vaccines protect against throughout the world

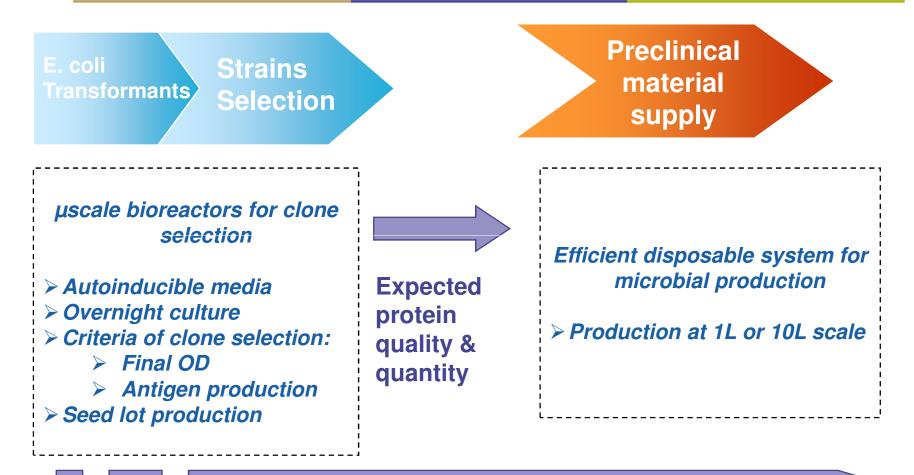

.

	Bacterial diseases		
Yellow fever	Pertussis		
Mumps	Diphtheria		
Poliomyelitis	Haemophilus influenzae type b Infections		
Measles	Meningococcal meningitis		
Rubella	Pneumococcal infections		
Influenza	Tetanus		
Hepatitis A			
Hepatitis B	Typhoid Fever		
Rabies	Cholera		
Japanese Encephalitis	Marcy l'Etoile also purifies		
Chickenpox	immunoglobulins		

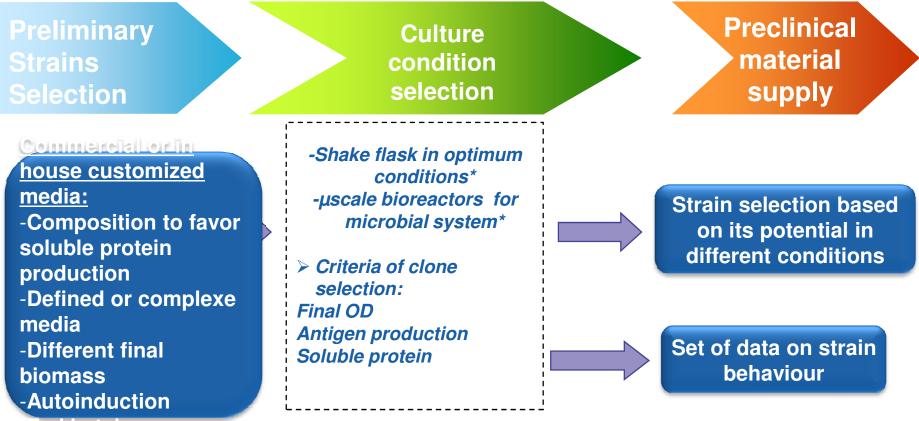
Microbial fermentation


Innovative tools for high density aerobic and pathogenic strains

Microbial fermentation


Different sequential process screening/development platforms

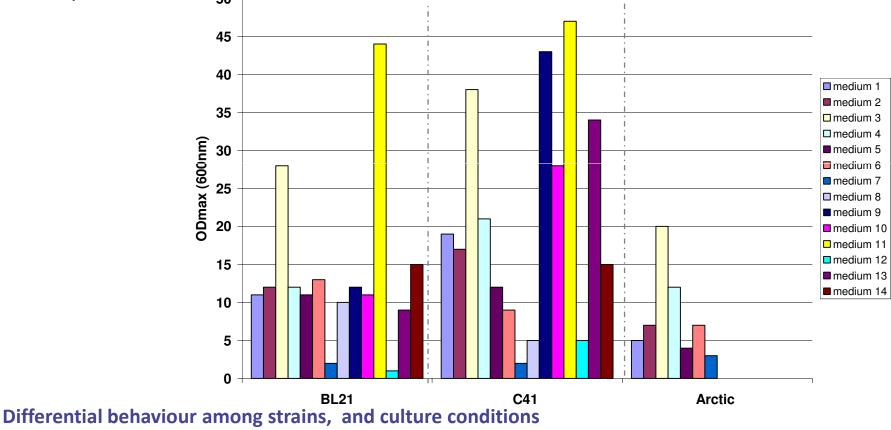
 Tools architecture organized in each platform to speed-up strain selection, process development and optimization of industrial processes


µscale and disposable bioreactors for fast material supply

2 weeks

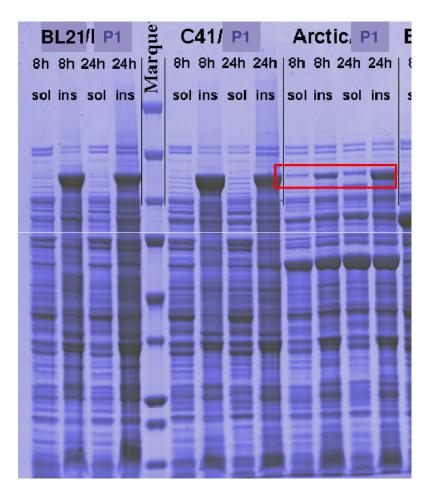
Set-up of predictive µscale tools for difficult to express protein

-Fee batch *Tools optimized to be representative of 20-200L scale bioreactor performances -Based on kLa measurement in our culture conditions (media, temperature)



7

Case study: screening of different hosts/media in µ24 bioreactors


- Difficult to solubilize protein for vaccine antigen subunit
- Evaluation of different culture conditions, under induction, for pre-selected functional clones:
 E. coli BL21, C41 and Artic 50 -

Case study: screening of different hosts/media

- Evaluation of production in the soluble and insoluble fractions for each condition
- Main results
 - Soluble fraction for the protein P1 expressed in *E. coli* Arctic host in a specific medium
 - No soluble fraction with *E. coli* BL21 whatever the culture conditions
- Next step: optimize best clone culture conditions to increase the protein production in the soluble fraction

Culture

condition

selection

Preclinical material supply

5/8

Case study: Cell tainer system® evaluation

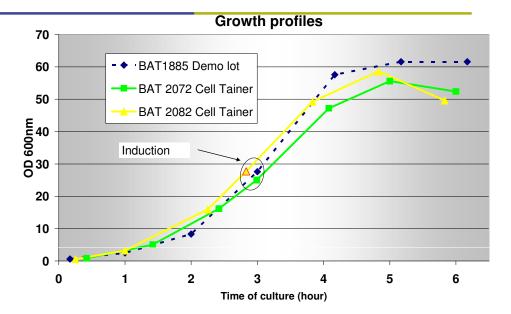
- Initial process in stainless steel fermentor (30L scale)
 - *E.coli* strain, protein production induced with IPTG
 - **Regulations:**
 - pH: 7.00, 37 °C, DO: 30% (cascade: stirrer , air flow then oxygen enrichment)

Evaluated system for fast preclinical production turn around: Cell tainer system

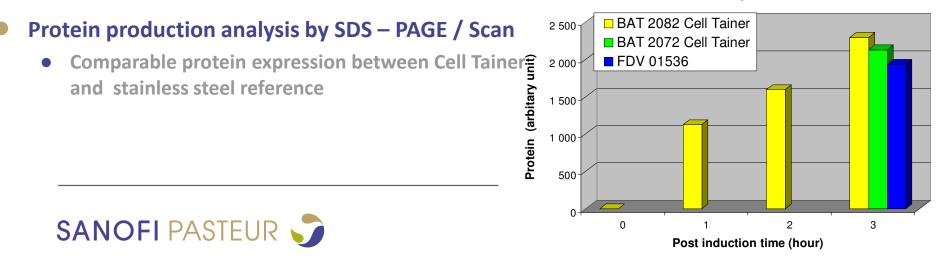
- Flexibility (1 to 15L, batch or fed batch mode, optional on line glucose measurement (TRACE system)
- Atypical agitation system allowing to reach high Kla values
- Preliminary run performed with working volume at 11 liters :
 - Foam in out air filter, Oxygen limitation

Optimal settings identified via kLa measurement :

- Working volume (7L), stirrer (45 rpm)
- Addition of anti-foam before inoculation
- Angle of agitation fixed at the maximum



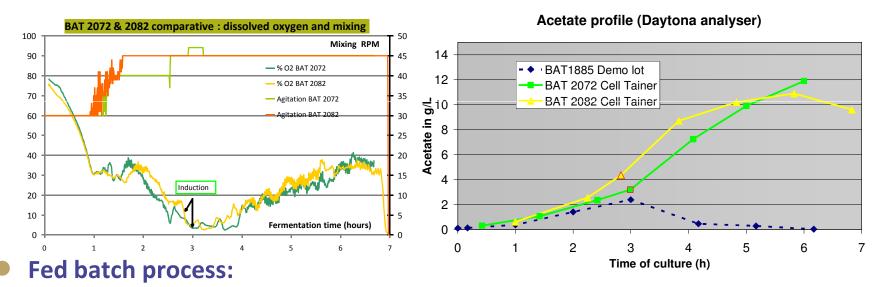
Batch mode process performance



 Growth kinetics with optimum settings

> similar growth and biomass between stainless steel reactor and cell tainer system

Protein production



Batch mode process performance

Preclinical material supply 7/8

Process parameters and metabolites follow-up:

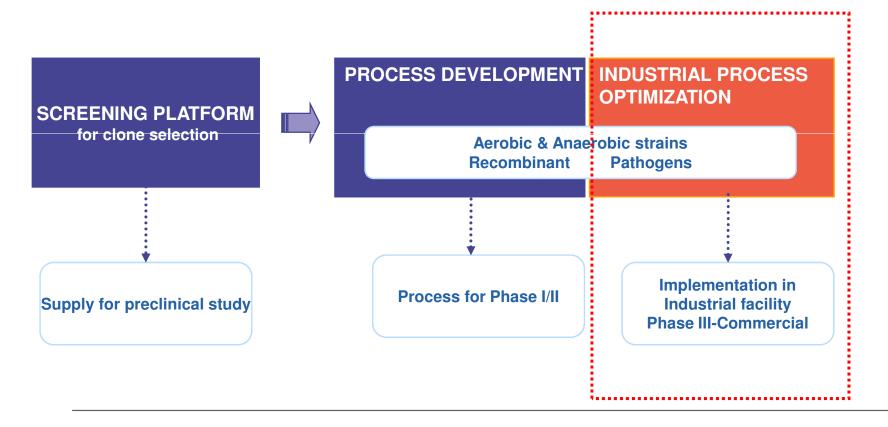
- Kinetic of glucose consumption identical to our standard process
- No oxygen limitation but set point not maintained during the culture
- High level of acetate production at the end of the culture

- Preliminary work shows than we can maintain DO above 20%
- Acetate level is low (below 2.5 g/L)

Advantages / Perspectives

Preclinical material supply 8/8

• First efficient *E.coli* batch process in a single use bioreactor


- Similar biomass (around 20g/L cdw) and protein production versus standard fermentor
- Batch and fed batch processes capabilities
- Good reproducibility
- Advantages thanks to the high turn-around for process development and small scale batches
- However, system scalability limited for purposes beyond preclinical supplies, seed train, phase I GMP production

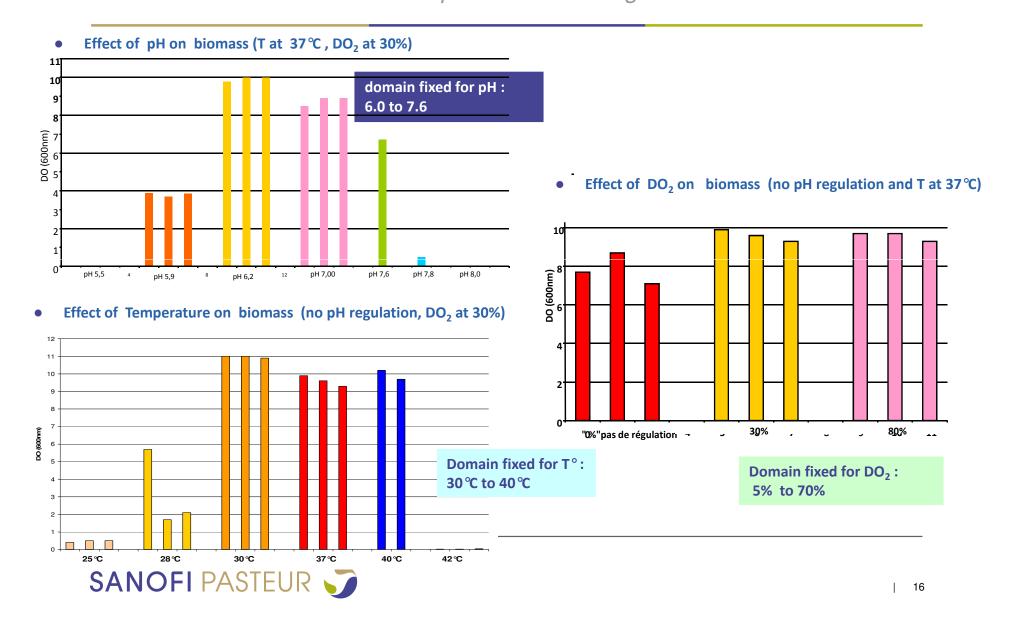
Microbial fermentation

Different sequential process screening/development platforms

 Tools architecture organized in each platform to speed-up strain selection, process development and optimization of industrial processes

Industrial process optimization

Case study: µscale to industrial scale


- Aerobic pathogenic strain Industrial process
- Aim of the study:
 - To model the impact of 3 process parameters (pH, DO, T) on biomass and antigen production and impurity level
 - To identify optimal process productivity conditions

Implementation of						Reference Industrial
micro scale-down	Scale down model	flas k	Micro -	Fermentor	Fermentor	Fermentor
and DOE	tested	lids K	fermentor	1L	30L	1000L
combination for	Working volume	150 ml	3 ml	0.5L	30L	1000L
process modelization and improvement of	Capacity of fermentors available in the lab	No limit	24	4	2	/
culture parameters	Biomass	79	9-10	9-10	8 - 9	8 - 9
for an industrial process	Results (OD _{600nm} Product yield (g/L)	0.4	0.75	0.8	0.71	0.62

Experimental domain definition :

identification of limit values for each parameter investigated

INDUSTRIAL PROCESS

OPTIMIZATION

DOE matrix selection for the study

N°Exp	température	pН	p O2
	°C	Unité	%
1	30.0	5.90	6.0
2	40.0	5.90	6.0
3	30.0	7.60	6.0
4	40.0	7.60	б.0
5	30.0	5.90	70.0
б	40.0	5.90	70.0
7	30.0	7.60	70.0
8	40.0	7.60	70.0
9	30.0	6.75	38.0
10	40.0	6.75	38.0
11	35.0	5.90	38.0
12	35.0	7.60	38.0
13	35.0	6.75	6.0
14	35.0	6.75	70.0
15	35.0	6.75	38.0
16	35.0	6.75	38.0
17	35.0	6.75	38.0
18	33.0	6.55	32.7
19	37.0	6.55	32.7
20	35.0	7.15	32.7
21	35.0	6.75	54.0
21	35.0	0.75	54.0

Response surface model (central composite matrix)

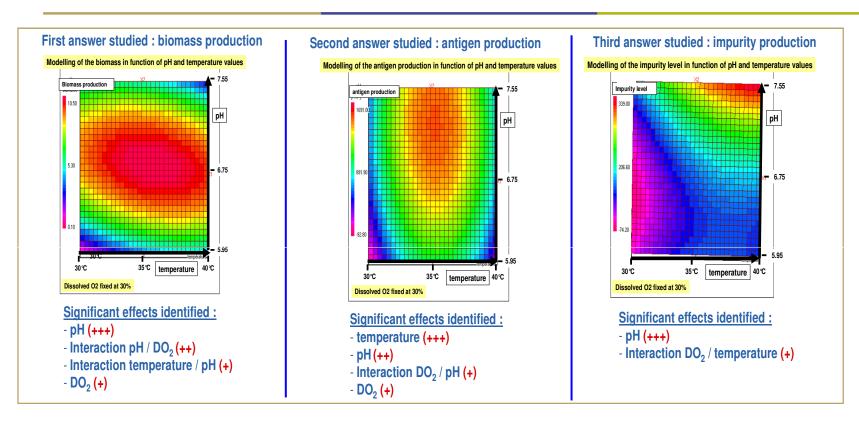
	Facteur	Unité	Centre	Pas de variation
Ul	température	°C	35.0	5.0
U2	pH	Unité	6.75	0.85
U3	pO2	%	38.0	32.0

INDUSTRIAL PROCESS

OPTIMIZATION

Use of the software Nemrodw[®]

Response surface model (central composite matrix)


21 cultures

- 15 conditions for the DOE
- 3 repetitions of central point
- 4 test points to validate the model

DOE interpretation and modelization OPTIMIZATION

4/6

• Effect of the 3 parameters investigated on the 3 responses (single effect or interaction)

• But no condition allowing at the same time to maximize antigen production and minimize the impurity quantity

DOE interpretation and modelisation INDUSTRIAL PROCESS OPTIMIZATION

- Modelisation of the phenomena investigated in the experimental domain
- Compromise :

Identification of conditions allowing at the same time the increase of the antigen production and the maintain/control impurity level

Implementation of results obtained through the DOE

6/6

 Testing of new settings at intermediary scales (fermentors 1liter and 100 liters) then at industrial scale (fermentor 1000 liters)

Confirmation of results
obtained with DOE at
micro scale :

increase of antigen production confirmed up to industrial scale

SANOFI PASTEUR 🎝

Settings	Initial	DOE predictions
Fermentor	Fermentor	with new
Scale	1L	settings
OD max (600nm	11	12
Product yield (g/L)	0.8	1.23
Impurity Level (UI/ml)	900 000	800 000

Conclusion

Technological evolution in the single use domain

• For microbial fermentation new single-use and µscale bioreactors have been recently developed than can deal with the high oxygen demand

Benefits of the single use and µscale bioreactors implementation

- Conduce fast expression system screening to select best host, clone, media, vector for antigen production at the expected quality and quantity
- Generate predictible results at industrial scale thanks to parameters regulation
- Increase process knowledge and robustness through DoE with limited workload
- Reduced time of process development trough downscale, multiple parallel bioreactors
- Ressource allocated to core expertise instead of non value tasks (cleaning, bioreactor decontamination)
- Lead significant increase of the antigen production for two industrial processes

Next steps

- Implementation of highthrough-put sample treatment,
- Automation of the different steps (culture, sampling, sample treatment, analytics),
- Data management

Acknowledgement

Sandy DEMAY Nicolas CHAUDET

Grégoire Exbrayat Bénédicte Leroy Nathaelle Luçon Didier Roze Nadine Venet

Jean Marc GUILLAUME –Head of Bioprocess R&D USP platform

Thank you! Questions ?