Engineering Conferences International ECI Digital Archives

Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies

Proceedings

Spring 6-12-2014

Modeling Reactions Between Activated Sludge Fractions and Ozone to Optimize Biosolids Reduction Processes

Dominic Frigon McGill University

Follow this and additional works at: http://dc.engconfintl.org/wbtr_i Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Dominic Frigon, "Modeling Reactions Between Activated Sludge Fractions and Ozone to Optimize Biosolids Reduction Processes" in "Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies", Dr. Domenico Santoro, Trojan Technologies and Western University Eds, ECI Symposium Series, (2014). http://dc.engconfintl.org/wbtr_i/31

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Modeling Reactions Between Activated Sludge Fractions and Ozone to Optimize Biosolids Reduction Processes

Dominic Frigon

Microbial Community Engineering Laboratory Department of Civil Engineering McGill University

June 12, 2014

Introduction

- Cost of biosolids disposal is rising in North America due to disposal options and environmental taxes.
 - For our partner wastewater treatment facility, disposal cost more than doubled over the last 7 years.
- In some Canadian jurisdictions (e.g., Province of Quebec), landfilling of biosolids will be banned by 2020.
- > Thus, facilities want to reduce biosolids production.
- Air Liquide tries to open the North American market, but imprecision in performance predictions remain an obstacle.
- New Canadian laws require proper nitrification even during winter (water temperature <<10°C)
 - Is nitrification affected by RAS-ozonation?

Objectives

- Develop and validate a mathematical model to improve performance predictions.
- Perform a global sensitivity analysis to understand the impact of biological processes on biosolids reduction.
- Perform a scenario analysis on nitrification stability to identify threatening operation conditions.

Concept of Ozone Unit Performance

• Technical/economic performance

• True performance evaluation steps

O₃ Contactor Performance by COD Solubilization

Note: total COD and total suspended solids (TSS) are related

Folodari, Andreottola and Ziglio (2010) Sludge Reduction Technologies in Wastewater Treatment Plants

Biosolids Reduction with Increasing Solubilization Rate (COD Solubilized/Solids Inventory/day)

Solubilization Rates (COD Solubilized/COD Solids Inventory/day)

Modeling Development and Validation

- Description of inactivation
 - kinetics and stoichiometry
- Model prediction of pilot-scale experiments' data
 - Same installation studied in 3 different years

Modeling Effects of Ozone on RAS Biomass

Is biomass inactivated at low O_3 dose?

- Others reported dose threshold
- Others reported linear inactivation
 Lab-scale
 Respirometer
- Contactor on:
 NO O₃ threshold
 Exponential inactivation
 Inactivation occurs at low O₃ doses

SOUR/SOUR0

Does inactivation solubilize biomass?

- From literature: ozone solubilizes cellular content...
- Conclusion:
 Little COD solubilization upon
 inactivation

1.0	<u> </u>	- Pilot-scale	RAS C	zonator Scale/Solids source	COD solubilization
		-O- Lab-scale: -O- Lab-scale:	Fresh RA sonicat		$(mg-COD/mg-O_3)$
0.8		- Pure culture	e: <i>R. jo</i> เ	Pilot-scale on RAS	
0.6				Control reactor	2.29 ± 0.27
	\$ 79	\		Ozonated reactor	2.04 ± 0.25
0.4	$\downarrow \downarrow \downarrow$	\searrow		Laboratory-scale on RAS	
02-	< A			Fresh RAS	2.47 ± 0.03
0.2				Sonicated RAS	3.34 ± 0.40
0.0 –	1			Laboratory-scale on Pure culture	3
0	50	100	15(Average of four pure cultures ^a	1.48 ± 0.37
	Og	3 dose (mg	g/L)		11

3 Pilot-Scale Experiments (3-5 months each)

	Aeration +Ozonated Reactor Control Rule	SRT (day)	Ozone Dose (Biosolids Reduction
Year 1	Aerobic +Constant MLVSS	6	0 to 6.5	0 to 46%
Year 2	Aerobic +Constant SRT	6	10.3	53%
Year 3 Phase 1 Phase 2 Phase 3	 Anoxic/Aerobic Aerobic Aerobic +Constant MLVSS 	• 12 • 12 • 6	 7.3 8.9 11.4 (lower COD solubilization) 	• 22% • 19% • 18%

Year 1 – Calibration of Model

- Independent calibration of inactivation parameters
- Fitting of inventory with transformation parameters.
- Good fit of the observed state variable.

Improvements in State-Variables' Predictions for Different Descriptions of Inactivation

Inactivation	Linear	Exponential	Exponential			
Fractions: Inactivation	Same	Same	Independent			
vs. transformation						
Predicted State-Variables Relative Squared Errors						
Biosolids inventory a [%]	23.3	22.0	21.8			
Soluble undegradable (S _U) ^b [%]	19.5	14.0	12.0			
Soluble biodegradable (S _B) ^b [%]	27.9	25.9	20.5			
Nitrate (S_{NO_3}) [%]	23.8	21.8	20.1			

Conclusions

- Exponential inactivation works better
- Inactivation solubilizes <10% of cellular COD

Calibrated Parameters of Year 1 Satisfactorily Predicted Year 2 and Year 3 Observations

Time (day)

Model Global Sensitivity Analysis

- Trends in biosolids reduction performance
- Generate implementation guideline

Sensitivity of Biosolids Reduction to Model and Operation Parameters

Operation Parameters Most Influential of Biosolids Reduction

Nitrification Scenario Analysis

- Explaining "inconsistent" data on nitrification rates
- Identification of operation conditions threatening nitrification
- Developing strategies to protect nitrification

Change in Specific Nitrification Rates

- Anoxic/Oxic conditions less detrimental than fully aerobic
- Specific nitrifcation rates can increase in some cases:

influent TKN/COD < 0.1 g-N/g-COD

Operation Conditions Threatening Nitrification

- Safety Factor (SF) = $SRT_{operation}/SRT_{min}$ SRT _{min of nitrifiers} = ($\mu_{ANO,max} - b_{ANO} - b_{ANO,O3}$)⁻¹
- 3 simulation studies of 1,500 simulations: variable reductions, 40% and 60% reduction
- Lower sludge reduction shows higher risk

Operation Conditions Threatening Nitrification (Constant 40% Biosolids Reduction)

How to minimize inactivation rate?

Sludge Production Ratio

1

0.8

0.6

0.4

0

0.02

Conclusion

- Bioprocess conditions influence greatly performance of RAS-ozonation units for biosolids reduction.
- Developed a model capable of predicting performance based on inactivation and COD solubilization.
- Nitrification stability is generally enhanced.
- Nitrification can be negatively impacted at lower temperature, SRT and higher overall inactivation.

- Contactor operation can be adjusted to alleviate problems.

Acknowledgements

Inactivation Sensitivity

Students •

Overall Operation

Siavash Isazadeh PhD

Pinar

Ozcer

PDF

Min Feng **MEng**

Luis Urbina Rivas **MEng**

Lab-scale reactors

Theresa

Luby

MEng

Shameem Jaffur MEng

Funding Organizations

- Regie d'Assainissement des Eaux du Bassin LaPrairie
- Air Liquide Canada ullet
- Natural Science and Engineering Research Council of Canada \bullet