Engineering Conferences International ECI Digital Archives

Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies

Proceedings

Spring 6-10-2014

Aerobic conditions prevail over scarce aeration and starvation conditions for activated sludge degradation

Jonathan Haber Swiss Federal Institute of Aquatic Science and Technology

Eberhard Morgenroth Swiss Federal Institute of Aquatic Science and Technology

Nicolas Derlon Swiss Federal Institute of Aquatic Science and Technology

Follow this and additional works at: http://dc.engconfintl.org/wbtr_i Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Jonathan Haber, Eberhard Morgenroth, and Nicolas Derlon, "Aerobic conditions prevail over scarce aeration and starvation conditions for activated sludge degradation" in "Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies", Dr. Domenico Santoro, Trojan Technologies and Western University Eds, ECI Symposium Series, (2014). http://dc.engconfintl.org/wbtr_i/8

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Minimizing excess sludge production in small scale, decentralized WWtreatment systems

Jonathan Habermacher Prof. Eberhard Morgenroth Dr. Nicolas Derlon

Eawag: Swiss Federal Institute of Aquatic Science and Technology

eawag aquatic research 8000

Wastewater treatment in the future is diverse

Centralized, large scale

Decentralized, small scale

www.stadt-zuerich.ch

Benefits:

- Efficient (finances, energy)
- Reliable by close monitoring

Benefits:

www.busse-is.de

• Limited sewer needs

Total cost for (2004, CH): WWTP: 100 Euro $p^{-1} yr^{-1}$ Sewer: 230 Euro $p^{-1} yr^{-1}$

 Possibility for local fresh-water production, heat recovery
 2

... and so are sludge treatment technologies

Energy demand for wastewater treatment W/Person (1 W = 9 kWh/person.year)

Treatment data from: Kolisch et al. (2010) KA 57(10), 1028-1032

www.klaro.eu

WWTP Characteristics

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Limited accessibility
- Low monitoring and maintenance

Sludge handling requirements

- Simple and reliable technology
- Priority on Hygenization
- Reliable operation
- Low maintenance and service
- Odor free

Current practice and optimization

Current practice

Aerobic sludge stabilization

- + Low odor
- + Low gas
- Energy requirement
- Storage volume

Sludge transporting

- + P-recovery
- + Energy recovery
- Transportation
 - GHG-emission
 - Costs
 - Handling

Optimization potential

Enhanced sludge

- degradation
- \rightarrow Smaller storage volume
- \rightarrow Fewer transports

Not fully aerobic sludge degradation \rightarrow Economy of energy

www.klaro.eu

Conditions for enhanced sludge degradation

Effect of Solid Retention Time (SRT) on sludge reduction

Review on membrane bioreactor studies studies

<u>Finding</u> SRT can be used for sludge reduction

Questions

- Origin of variation in datapoints?
- Other control parameters than SRT?

Conditions for enhanced sludge degradation

Effect of Redox potential and Starvation on sludge reduction

Key Parameter for sludge reduction	Effective- ness	Mechanism	Questions	Publications
Low redox potential (no or low level aeration, non methanoge nic)	variable	 Iron reduction Different compounds degradation 	 SRT vs. Redox effect? Additional conditions? Mechanism: in depth 	 Saby et al. 2003, Wat. Res. (37) Novak et al. 2007, Wat. Env. Res. (79) Park et al. 2006, Wat. Env. Res. (78) Chon et al. 2011, Wat. Res. (45), Ramdani et al. 2012, Wat. Res. (46)
Starvation	uncertain	 Cryptic growth Viral attack Predation 	Starvation effect?Mechanism?	Chon et al. 2011, Wat. Res. (45), pp. 6021-29

ETH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Research approach

Investigating the effect of SRT, Aeration and Starvation

ETH

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

aquatic

000

Effect of SRT and Aeration – Phase 1 «SSRs aerobic»

Effect of SRT and Aeration – Phase 1 «SSRs aerobic»

- 1 i

Eidgenössische Technische Hochschule Zürich

Effect of starvation - Methodology

Enhanced sludge degradation by starvation?

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of starvation – Simulation required

EIGH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of starvation – Results SSRs

EIGENTH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of starvation – Results SSRs

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of starvation – Results SSRs

Specific sludge degradation rate in SSRs is similar or slightly slower than ASM3 kinetics!

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of starvation – Simulation required

Overall System degradation behavior

Degradation kinetics based on overall sludge production

Overall System degradation behavior

Degradation kinetics based on overall sludge production

Scenario 1:

- b_{OHO}=0.2 d⁻¹ (default)
- growth yield is different
- $\rightarrow Y_{OHO}$ =0.95 mg COD mg COD⁻¹

Scenario 2:

- Y_{OHO}=0.54 mg COD mg COD-1 (default)
- decay rate is different

```
\rightarrow b_{OHO}=0.04 d<sup>-1</sup>
```

SBR and thus overall system sludge production are extraordinary high

Closing

... Minimization of excess sludge production in small scale decentralized WWtreatment systems

Summary

- Aerobic SRT has the expected sludge reducing effect
- Scarce aeration condition decreases the rate of endogenous processes
- Energy-substrate starvation is not enhancing sludge degradation processes

Outlook

• Mechanistic insights: Measurements of Active biomass, EPS, Enzymatic activities

Conclusion

- Design of sludge minimization process: Aerobic SRT is most reliable and applicable in decentralized systems, e.g. aerated sludge storage is recommended
- Use of electron acceptor limitation for sludge minimization: careful evaluation of working conditions and key mechanisms is still required
- Filling mode of the activated reactor could impact on sludge production