Engineering Conferences International ECI Digital Archives

Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies

Proceedings

Spring 6-10-2014

Valorization of sewage sludge via nitrite nutrients removal from anaerobic effluents

F. Fatone University of Verona

S. Longo University of Verona

N. Frison University of Verona

E. Karsou University of Verona

S. Malamis University of Verona

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/wbtr_i Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

F. Fatone, S. Longo, N. Frison, E. Karsou, S. Malamis, D. Renzi, and L. Lijo, "Valorization of sewage sludge via nitrite nutrients removal from anaerobic effluents" in "Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies", Dr. Domenico Santoro, Trojan Technologies and Western University Eds, ECI Symposium Series, (2014). http://dc.engconfintl.org/wbtr_i/7

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

F. Fatone, S. Longo, N. Frison, E. Karsou, S. Malamis, D. Renzi, and L. Lijo

ECI

Valorization of sewage sludge for via nitrite nutrients removal from anaerobic effluents

S. Longo, N. Frison, E. Katsou, S. Malamis, D. Renzi, L.Lijò, F. Fatone

Department of Environmental Sciences, Informatics and Statistics, University Ca'Foscari of Venice, Department of Biotechnology, University of Verona, Alto Trevigiano Servizi, Montebelluna, Italy Biogroup, University of Santiago de Compostela, Spain

> June 8-14, 2014 Otranto (Lecce), ITALY

Outline

- Anaerobic side-stream: a key-stream to optimize nutrients management in WWTPs
- Short-cut nitrogen removal and via nitrite phosphorus bioaccumulation
 - Bioprocesses
 - Pilot-scale application
 - Full scale development
- Conclusions and future perspectives

Conventional MLE and AD in WWTPs

Ammonification within anaerobic digestion of sewage sludge

Figure 6.2. Release of nitrogen bounded in primary and secondary sludge (values related to initial total suspended solids TSS in digester feed)

Conventional MLE and AD in WWTPs

Conventional BNR-AD in WWTPs

Revamping and optimization - scheme 1

Revamping and optimization - scheme 2

Revamping and optimization - scheme 3

→ Energy neutral wastewater treatment (WWTP Zurich, WWTP Strass)

6

Anaerobic supernatant from WAS and/or OFMSW

AFTER DIGESTION OF (ONLY) OFMSW:

Very variable depending on the quality and characteristics of the OFMSW

Anaerobic supernatant from WAS and/or OFMSW

	TSS	COD	N-NH4	TN	Ptot	рН	Alcalinità totale	Conducibilità
	g/L	gCOD/L	gN/kg	gN/kg	mgP/L	-	gCaCO3/kg	mS/cm
Only OFMSW	1.6-2.57	2.7-8.2	500-3000	3000-8000	50-300	7.3-8.5	Fino a 8000	1.47-23.8
WAS + OFMSW	<0.1	50-170	355-535 (446)	355-535 (491)	33-117	7.5-7.9	1380-2270	3-6

AFTER CODIGESTION OF WAS AND OFMSW

Generally, linear relation between ammonium and OFMSW fed

NH4-N (g/L)=0.132 OLRofmsw+0.485 (Pavan et al. 2008)

Treatment alternatives for anaerobic side-stream

Treatment alternatives for anaerobic side-stream

Nutrients recovery by chemical-physical treatments						
Membrane processes (UF-RO)	Pretreatment for solids separation. Expensive treatment of the retentate (>5 €/m3)					
Struvite precipitation and/or crystallization	Recovery of N and P as MAP. Unknown investment costs and market for MAP (>6 €/m3)					
Ammonia stripping and recovery by acid scrubbing	High performances (>90%). VOC production and high O&M costs (>6-8 €/m3)					
Ion exchange	High O&M costs for strong nitrogenous wastewater					
Nutrients removal (nit	rogen elimination $N \rightarrow N_{2gas}$)					
Biological processes	Conventional (3-5 E/m3) Costly for aeration					
	requirement and external carbon source Innovative (1-2 €/m3) Short-cut nitrification denitrification, complete autotrophic nitrogen removal					
Constructed wetland (Submerged Flow Systems – SFS-, Free Flow Systems – FFS-)	requirement and external carbon source Innovative (1-2 €/m3) Short-cut nitrification denitrification, complete autotrophic nitrogen removal Efficient as tertiary (finishing) treatment . Scarce denitrification, frequent clogging					

Via-nitrate and via-nitrite processes: the framework

Processes	O ₂ consumption (kg O ₂ (kg N) ⁻¹)	COD consumption (kg COD (kg N) ⁻¹)	CO ₂ emission (kg CO ₂ (kg N) ⁻¹)	Yield (kg VSS (kg N) ⁻¹)
Nitrification-Denitrification	4.57	2.86	5.76	1.0 - 1.2
Partial Nitrification- Denitrification	3.43	1.71	4.72	0.8 - 0.9
Partial Nitrification- Anammox	1.71	0	3.14	< 0.1

 $NH_4^+ + 0.625 CH_3COOH + 2 O_2 + HCO_3^- \rightarrow 0.5 N_2 + 3.75 H_2O + 2.25 CO_2$

 $NH_4^+ + 0.375 CH_3COOH + 1.5 O_2 + HCO_3^- \rightarrow 0.5 N_2 + 3.25 H_2O + 1.75 CO_2$

 $NH_4^+ + 0.85 O_2^- + 1.11 HCO_3^- \rightarrow 0.44 N_2^- + 0.11 NO_3^- + 2.56 H_2O^- + 1.11 CO_2^-$

AnAmmOx: current development

More than 50 full scale plants for side-stream treatment

Courtesy Yvonne Schneider

AnAmmOx or non AnAmmOx: selection criteria

- Investment costs (volume, materials)
- Energy demand (aeration, mixing, pumping)
- Chemicals (NaOH, C-source)
- Sludge disposal (treatment, transport)
- Start-up (duration, effort)
- Control system (complexity, degree of automation)
- Experience (full-scale plants in operation)
- Stability (endurance, resistance against peak loads, inhibition)

What about phosphorus?

Post-treatment is necessary for phosphorus

recovery

Struvite Crystallization Process at the Treviso municipal WWTP

The recovered struvite must be disposed as waste >> the SCP plant was dismissed after the plant and process validation

Struvite vs BioP: an open debate

Struvite (MgNH4 PO 4 ·6HO) is generally considered as the optimal phosphate mineral for recovery as it **contains 51.8% of P₂O₅** (based on MgNH 4 PO2) and could potentially be used as a slow-release fertilizer. If the economic and life cycle costs are taken into account, however, phosphate recovery as struvite was not considered the best approach, for the following reasons: (1) production of P-mineral with a high content of struvite from real wastewater is a difficult and costly process; and (2) struvite is not superior to other phosphate based compounds in fertilization efficiency, nor is it an exclusive form of raw materials favored by the fertilizer industry. Hence, phosphate recovery could be aimed at any acceptable forms of phosphate-based compounds by the fertilizer industry, depending on onsite circumstances. Accordingly, efforts should also go to the use of (composted) sludge for effective fertilization

Xiaodi Hao, Chongchen Wang, Mark C. M. van Loosdrecht, Yuansheng Hu. Looking Beyond Struvite for P-Recovery Environ. Sci. Technol. 2013, 47, 4965-4966

Fermentation promotes production of acetate and propionate as primary by-products

Zeng, et al (2006) Bouzas, et al (2000)

Comparison of the via nitrite with the via nitrate EBPR

- Guisasola et al. (2009) found a **higher anoxic NUR/PUR ratio for the via nitrite EBPR** compared to the respective ratio found in literature for the via nitrate EBPR. Since the energy obtained from the denitrification of one mole of nitrite is lower than the respective one for one mole of nitrate a higher amount of nitrite is required to uptake 1 mole of phosphate.
- Lee et al. (2001) found that PUR was higher when nitrite was the electron acceptor rather than nitrate.
- Martín et al. (2006) showed that the dominant DPAOs of Accumulibacter used nitrite instead of nitrate as electron acceptor.
- Peng et al. (2011) found that the short-cut nutrients removal process could save more than 22.3% and 49.4% of poly-b-hydroxyalkanoate (PHA) for phosphorus and nitrogen removal respectively compared to the conventional BNR process when a real-time step feed was employed.

The bioprocesses in the Short-Cut Enhanced Nutrients Abatement (S.C.E.N.A.)

- Alkaline production of Best Available Carbon Source (BACS) from sewage sludge (or OFMSW)
- Nitritation in aerobic conditions (so as to also minimize N₂O emissions)
- Denitritation and EBPR (thanks to the BACS)

Sequencing Batch Reactor

Control Automation on the basis of pH, ORP and conductivity

The first validated application: BACS from OFMSW fermentation – Treviso –Italy-

The first validated application: BACS from OFMSW fermentation

The short-cut Sequencing Batch Reactor

3 automatically controlled blowers: maximal flow of 25 m³/h

Agitation up to 1500 rpm

Submerged probes to monitor the process pH, DO, ORP, Conductivity, NH4-N, NOx-N

Pump for the external carbon sources: in the figure <u>FERMENTATION LIQUID OFMSW</u>

Long term operation of the vianitrite process

Frison et al. (2013) Chem Eng. J.

Short-cut nitrogen removal (nitritation-

denitritation)

Frison et al. (2013) Chem Eng. J.

GHG Emissions in WWTPs

Mt CO ₂ eq	1990	2000	2005	2010	2020
Landfill $CH_{a \& b)^{4}}^{(average)}$	550	590	635	700	910
Wastewater CH ₄	450	520	590	630	670
a					
Wastewater N ₂ O ^a	80	90	100	100	100
Incinerator CO ₂ ^b	40	50	50	60	60
Total	1120	1250	1345	1460	1660

^a Based on reported emissions from national inventories and national communications, and (for non-reporting countries) on 1996 inventory guidelines and extrapolations (US EPA, 2006).

^b Based on 2006 inventory guidelines and BAU projection (Monni et al., 2006).

Total includes landfill CH_4 (average), wastewater CH_4 , wastewater N_2O and incineration CO_2 .

Determination of gaseous emissions

- The static chamber method and the Bruel and Kjaer photo-acoustic analyzer were used
- Measurement of N₂O, CO₂, CH₄, NH₃ and CH₃SH at various times of the SBR, during aeration reaction, anoxic reaction and sedimentation.

 $\mathbf{E}_{\mathbf{R}} = \frac{\mathbf{C}_{i} - \mathbf{C}_{0}}{\mathbf{t}_{i} - \mathbf{t}_{0}} \frac{\mathbf{V}_{ch}}{\mathbf{A}_{ch}}$

 E_{R} (mg/m²h) is the emission rate of the gas ti (h) and t₀ (h) : the time edges of the linear portion of the concentration plot C_{i} (mg/m³) and C_{0} (mg/m³): gas concentration at times t_i and t₀ respectively

Total amount of gas emitted in one SBR cycle

$$G_{M} = \sum (E_{R}A_{SBR}\Delta t)$$

 G_M (mg/cycle) is the amount of the emitted gas per cycle $A_{SBR}(m^2)$ is the surface area of the pilot SBR, $1.5 \cdot 1.5 = 2.25 m^2$ Δt (h) is the time interval during which the gas emissions were recorded

Comparison with other studies treating anaerobic effluents in WWTPs

Wastewater	Process and conditions	N ₂ O emissions (% of N load)	Reference	
Anaerobic supernatant from WAS & OFMSW co- digestion	Nitritation/ denitritation High DO Low nitrite accumulation	0.24	This work	
Anaerobic supernatant from WAS & OFMSW co- digestion	Nitritation/ denitritation Low DO High nitrite accumulation	1.38	This work	
Sludge reject water	2 stage partial nitritation – anammox	2.3	Kampschreur et al., 2008	
Sludge reject water	1 stage partial nitritation – anammox	1.3	Weissenbacher et al., 2010	
Sludge reject water	Nitritation	3.8	Gustavsson and Jansen, 2011	

Strategies to mitigate N₂O as evidenced by our worked

Low N₂O **Providing sufficient aeration** during the nitritation stage so that the DO is maintained at least at 1.5 mg/L Applying a vNLR that is not higher than the system's nitrifying and denitrifying **High DO** capacity. This way the High COD/N Low nitrite accumulation of ammonium Low nitrite Aerobic before anoxic and nitrite is limited Apply the aerobic/anoxic Denitritation Nitritation stage sequence stage

Conclusions on short-cut nitrogen removal

- START-UP: stable and robust wash-out of nitrite oxidizing bacteria can be achieved within 3 weeks treating anaerobic digestate of sewage sludge and OFMSW
- LONG-TERM VALIDATION: no disturbances of short-cut biological nitrogen removal were caused by extra-ordinary conditions
- MAXIMAL TREATMENT POTENTIAL: the short-cut process was stable up to 1,1 kgN/m³*d, but total nitrogen removal was achieved at 0,8 kgN/m³*d, which is the best option even for N₂O emissions
- REAL-TIME PROCESS CONTROL: may be reliable up to 0.8 kgN/m³*d. It is feasible by indirect parameters, specifically pH, ORP and conductivity.
- **COST ESTIMATION:** nitritation-denitritation involved 1.2-1.5 €/kgN, this cost could be cut by 40-50% by complete autotrophic nitrogen

Short-cut nutrients removal in SBR

Mix of SCFA in the BACS

Type of Carbon source	HAc/TVFAs (%)	HPr/TVFAs (%)	HBt/TVFAs (%)	C5-C7/TVFAs (%)
LD OFMSW	63.4 (55.71)	6.6 (6.3-7.0)	12.0 (4.8-19.2)	18.0 (12 -24)
FL OFMSW	73.2 (69-77)	9.6 (8.0-11.2)	16.0 (13.8-18.3)	1.1 (0.6-1.7)

-Up to 80-90% are acetic, proprionic and butyric acids;

-SCFA enhanced the denitrifrying phosphorus removal via nitrite (Tong et al., 2007; Ji and Chen, 2010; Li et al., 2011);

-Recent study states the possibility to enhance the production of SCFA (in particular propionic and butyric acids) by alkaline fermentation (Chen et al., 2013) through the addition of soda, but we need to perfom a sustainable and cost effective process

Pilot scale trials

FISH Analysis

Inoculum* (DAPI)		Inoculum* (GAOmix) Presence 1-2 %	Inoculum* (PAOmix) Presence 5%
	Inoculum (DAPI)		
After 30 th of o (DAPI)	peration	After 30 th of operation (GAOmix) Presence 1-2 %	After 30 th of operation (PAOmix) Presence 36-38%

The quantification was perform using the software Jmage

* Activated sludge of Treviso WWTP.

<u>Predominance of coccus morphology (non rod morphology) which demonstrates the</u> <u>presence of nitrite-DPAO versus nitrate-DPAO</u>

(Guisasola et al., 2009; Carvalho et al.2007)

Frison et al., JCTB, Accepted

Accumulation of PHA...some tips of the afternoon presentation

In collaboration with Dr. A. Oehmen University of Lisboa (Portugal)

The second validated application: BACS from sewage sludge fermentation – Carbonera

Short-Cut Enhanced Nutrients Removal (SCENA) from Anaerobic Supernatant -Full Scale in 2014-

Alkaline fermentation using alkali-silicates

0.30-0.32 gSCFA/gTVS

Pilot scale kinetics

Carbon source is dosed automatically during the anoxic or anaerobic phase of the scSBR operation

IN SITU KINETICS

200

Preliminary cost comparison for management of nutrients associated with digester supernatant

Costs		MLE	SCENA
CAPEX: for MLE ^a	€/year	1277	0
CAPEX: for SBR ^a	€/year	0	389
CAPEX: for sludge fermenter ^a	€/year	0	449
OPEX: EE for aeration ^b	€/year	72060	54084
OPEX: Sludge disposal ^c	€/year	13607	7884
OPEX: Aluminium Polychloride	€/year		
(PAC) ^d		10439	0

(interest rate 4% was used for CAPEX)

^a Payback time = 25 years; ^b 4 kWh/kgO₂, 0.2 €/kWh; ^c 400 €/kgTS_{disposed}; ^d €/tonAl 5500

S.C.E.N.A. in full scale in 2014

Conclusions

-Short-cut nitrification and denitritation (SCND) with external carbon source is solid and reliable process to treat liquid effluents originated from anaerobic (co)digestion;

The **short-chain fatty acids** produced by the fermentation of biowaste available in WWTPs may enhance the **simultaneous biological removal of nitrogen and phosphorus via-nitrite pathway**.

Alkaline fermentation optimize the production and separation of BACS and use of alkali-silicates for pH buffering is effective

FISH analysis confirmed a stable presence of nitrite-DPAO compared with the inoculum

PHA accumulating organisms were selected so as to leave perspectives to be presented later this afternoon

Technical, Environmental & Economic Challenges

Verona, Italy | 23-27 June 2014

'ECOSTP2014' – VERONA 23-27 JUNE 2014

www.ecostp.org

Thank you !

