Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials For **Extreme Environmental Applications II**

Proceedings

Spring 5-14-2012

Characterization of mechanically activated zirconium diboride (ZrB2) powders

Mustafa Tuncer **Dulpinar University**

Follow this and additional works at: http://dc.engconfintl.org/uhtc

Part of the Materials Science and Engineering Commons

Recommended Citation

Mustafa Tuncer, "Characterization of mechanically activated zirconium diboride (ZrB2) powders" in "Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II", W. Fahrenholtz, Missouri Univ. of Science & Technology; W. Lee, Imperial College London; E.J. Wuchina, Naval Service Warfare Center; Y. Zhou, Aerospace Research Institute Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/uhtc/33

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

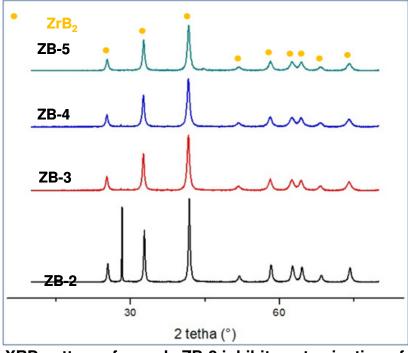
CHARACTERIZATION OF MECHANICALLY ACTIVATED ZIRCONIUM DIBORIDE (ZrB₂) POWDERS

Mustafa TUNCER Dumlupinar University / TURKEY Ceramic Engineering Dept.

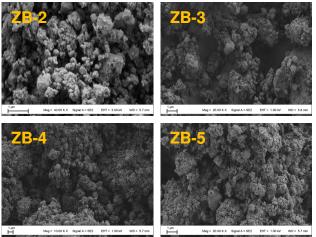
The Purpose of Study

- □ investigate the effect of high energy planetary milling on the powder characteristics of ZrB₂ powders.
- densify activated powders at low temperatures

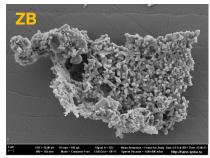
Sample	Ball / Powder Ratio (BPR)	Degree of Filling (%)	Milling Time (min)
ZB (sol-gel initial powder)	-	-	-
ZB-1 (sol-gel powder)	47:1	32	8
ZB-2	20:1	40	20
ZB-3	47:1	31	20
ZB-4	50:1	42	20
ZB-5	100:1	33	20

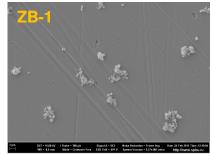

Milling in MPP-1 planetary mill at acceleration 28 G. 0.5 ml of ethanol was added as a process control agent. Steel vial and steel balls with 5 mm diameter . Commercial powders (Alfa Aesar, 99.5 %, -44 μ m)

RESULTS 1/2


The Surface area, size and lattice parameters for ZrB₂ powders prepared by mill activation

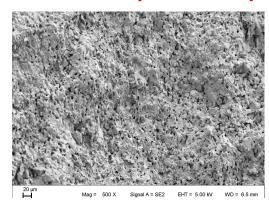
Sample	Surface area (m²/g)	BET size (nm)	XRD size (nm)	Lattice parameters	
	(0,	, ,		а	b
ZB	2	492	480	N/A	N/A
ZB-1	4	246	44	N/A	N/A
ZB-2	4.5	220	34.8	3.174812	3.534825
ZB-3	14	70	25.8	3.174656	3.531582
ZB-4	13	76	24.4	3.174815	3.530989
ZB-5	40	25		3.175015	3.531534


XRD patterns of milled **ZrB**₂ powders



XRD pattern of sample ZB-2 inhibit contamination of the powder by the milling media. With increasing ball /powder ratio (from ZB-2 to ZB-5), the intensity of peaks are broader and decrease.

RESULTS 2/2



For sol-gel synthesized powders, hard agglomerates were broken and particle size decrease after milling process

Densities of sintered compacts at 1775 ° C for 5 h

Sample	Density (%)	
ZB-2	88.2	
ZB-3	82.1	
ZB-4	77.6	

Microstructure of compacted ZB-2 powder

CONCLUSIONS

- Parameters of milling allow one to perform fast and efficient particle size reduction.
- Low temperature densification of zirconium diborides can be achieved using high energy ball milling process.
- Mechanical treatment of ZrB2 in a planetary mill MPP-1 allowed us to obtain powders with average particle size of nanometer scale.
- Colloidal processing methods can be used for preparing agglomeration free-dense sintered compacts