Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II

Proceedings

Spring 5-17-2012

Ultra-High Temperature Thermal and Mechanical Properties of ZrB2-Based Ceramics

Greg Hilmas Missouri University of Science and Technology

Bill Fahrenholtz Missouri University of Science and Technology

Follow this and additional works at: http://dc.engconfintl.org/uhtc Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Greg Hilmas and Bill Fahrenholtz, "Ultra-High Temperature Thermal and Mechanical Properties of ZrB2-Based Ceramics" in "Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II", W. Fahrenholtz, Missouri Univ. of Science & Technology; W. Lee, Imperial College London; E.J. Wuchina, Naval Service Warfare Center; Y. Zhou, Aerospace Research Institute Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/uhtc/16

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Ultra-High Temperature Thermal and Mechanical Properties of ZrB₂-Based Ceramics

Greg Hilmas and Bill Fahrenholtz Missouri University of Science and Technology Rolla, MO U.S.A.

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II May 13-18, 2012 Hernstein, Austria

This work was supported by: NSF Contract # DMR-0906584 AFOSR Contract # FA 9550-10-C-0143

Goals and Outline

- Goals
 - Understand the role of impurities (i.e., C), additives (i.e., SiC), isotopes (¹⁰B or ¹¹B in ZrB₂) on the thermal and mechanical properties of ZrB₂ based ceramics

Outline

- Thermal Conductivity of ZrB₂-based Ceramics
 - Historical studies vs. modern research studies
 - Missouri S&T studies Thermal conductivity to 2000°C+
- Flexure Strength of ZrB₂-based Ceramics
 - Historical studies vs. modern research studies
 - Missouri S&T studies Annealing; Flexure strength to 2300°C+
- Conclusions

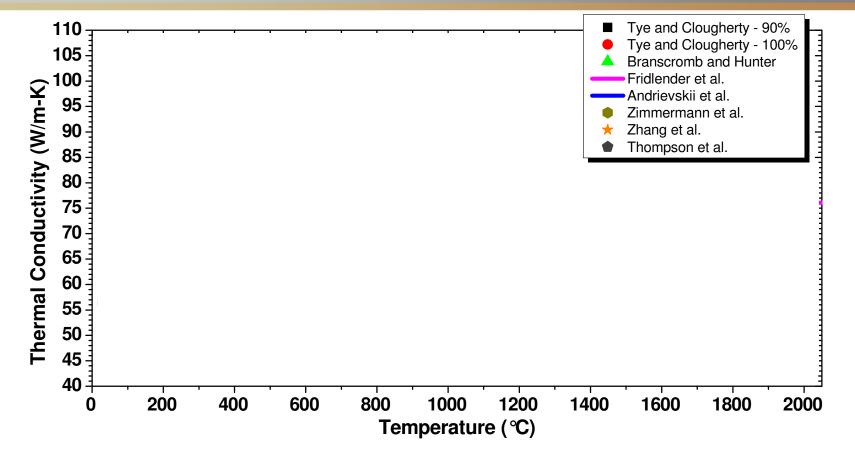
Thermal Conductivity of ZrB₂-Based UHTCs

Literature– ZrB₂ Thermal Conductivity

		Test			
Reference	Year	Relative Density (%)	Temperatures (°C)	Special Considerations	
Tye and		Bensity (70)			
Clougherty ¹	1970	100	100-1000		
Tye and					
Clougherty ¹	1970	90	100-1000	"fluid energy milled"	
Branscomb and				0.92% impurity	
Hunter ²	1971	97.4	200-1300	content	
Fridlender et al.3	1980	92	1000-2200	vibrogrinding (60hrs)	
Andrievskii et al.4	1980	95	100-900	-	
Zimmermann et al.5	2008	100	25-1327	attrition milled w/WC	
				reaction processed	
Zhang et al.6	2011	92.5	25-427	(Zr+B)	
Thompson et al. ⁷	2012	100	400-2000	attrition milled w/WC	

¹Tye and Clougherty, *Proceeding of the Fifth Symposium of Thermophysical Properties*, 396-401, 1970 ²Branscomb and Hunter, *Journal of Applied Physics*, 42, 2309-2315, 1971

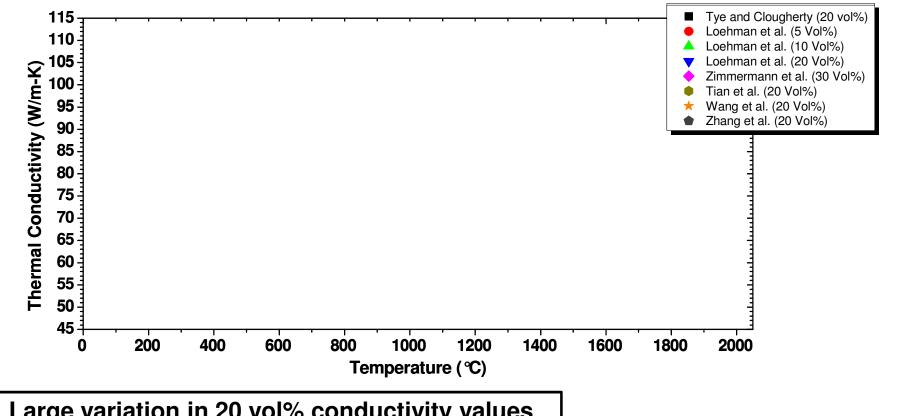
³Fridlender, Neshpor, Ordan'yan, and Unrod, *Teplofizika Vysokikh Temperatur*, 17, 1210-1215, 1980


⁴Andrievskii, et al., *Soviet Powder Metallurgy and Metal Ceramics*, Vol 19(2), 27-29, 1980

⁵Zimmermann, Hilmas, Fahrenholtz, Dinwiddie, Porter, and Wang, *J. of the American Ceramic Society*, 91, 1405-1411, 2008

⁶Zhang, Pejaković, Marschall, and Gasch, *Journal of the American Ceramic Society*, 94, 2562-2570, 2011

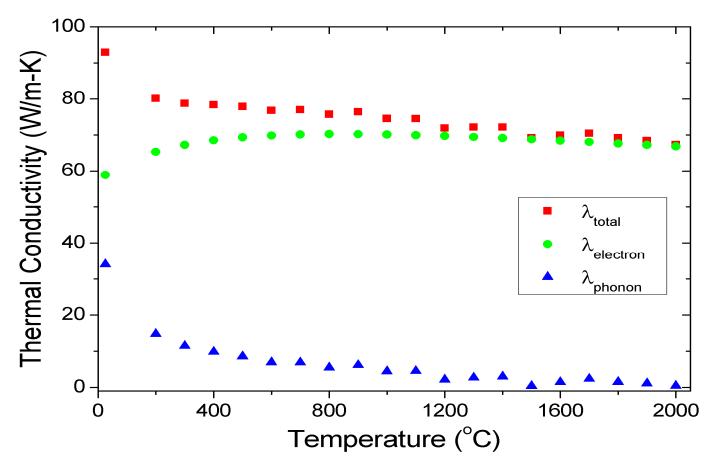
⁷Thompson, Fahrenholtz, and Hilmas, *Journal of the American Ceramic Society*, 95, 1077-1085, 2012



- Broad range of reported conductivity values
- Slope of conductivity vs. temperature varies between positive and negative
 - Highest conductivities have negative slopes
 - Materials with positive slopes tend to have been milled (WC contamination)

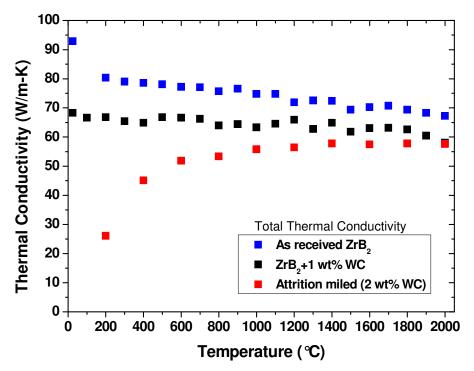
Literature - ZrB₂+SiC Conductivity

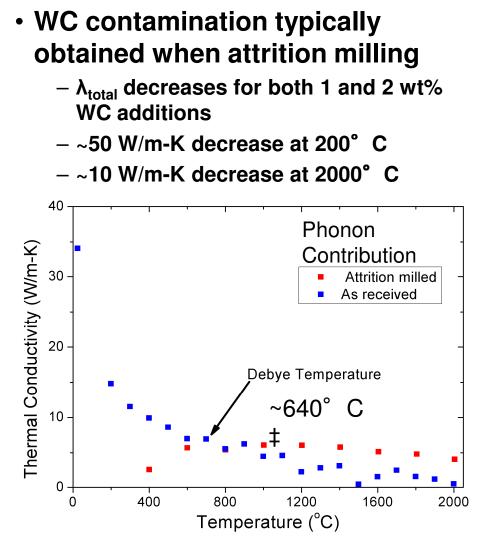
- Large variation in 20 vol% conductivity values
 - 35 W/m•K difference @ 200°C
 - Multiple factors influencing overall conductivity
- Increasing SiC additions decrease thermal conductivity •
- Decrease in conductivity w/temperature shows similar slope between different literature sources



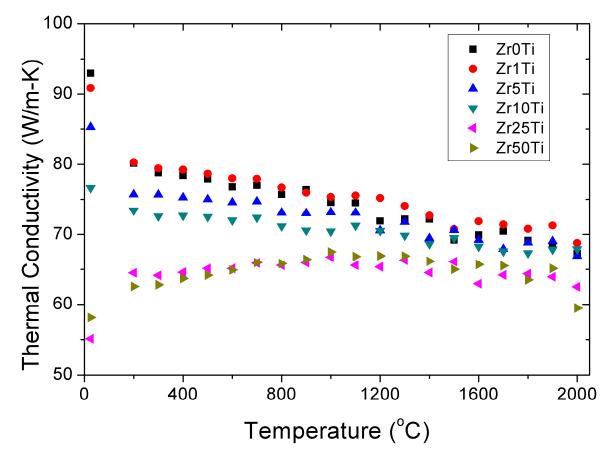
Missouri S&T – λ Thermal Conductivity

- Total thermal conductivity, $\lambda_{total} = D \cdot C_p \cdot \rho$
- Laserflash thermal analysis, 25 2000°C in År
 - Diffusivity (D) evaluated using Clark and Taylor method
 - Heat capacity (C_p) comparison method and/or NIST JANAF
 - Density (ρ) obtained using Archimedes' method + expansion w/ temp.
- Determine electronic ($\lambda_{electron}$) & phononic (λ_{phonon}) contributions
- $-\lambda_{total} = \lambda_{electron} + \lambda_{phonon}$ where $\lambda_{electron} = 2.44 \times 10^{-8} \sigma T$ (Wiedemann-Franz)
- Electrical conductivity (σ) measured at temp T by 4-point probe
- Tailor λ for UHTC applications
- Maximize λ
 - Hypersonic vehicle leading edges
 - Studying "phase pure" ZrB₂ (reactive processing and isotope affects)
- Minimize λ
 - Hypersonic thermal protection systems and high temperature refractories
 - Researching solid solution and second phase additives


λ for As-Received ZrB₂

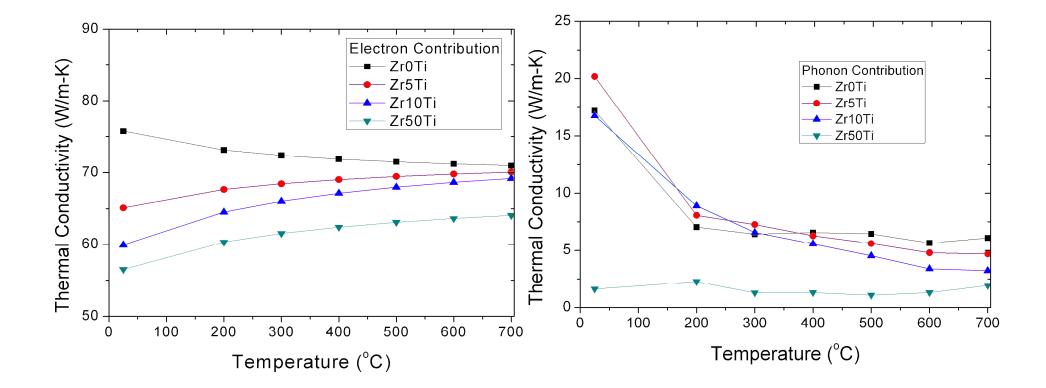

- Hot pressed as-received ZrB₂ (H.C. Starck, Grade B)
- Electron contribution dominates thermal conductivity in ZrB₂
- Phonon contribution decreases to nearly zero above 1200°C

- WC additions decrease both $\lambda_{electron}$ and λ_{phonon} contributions to λ_{total} below the Debye temperature
- Above Debye, electron contribution is decreased by WC



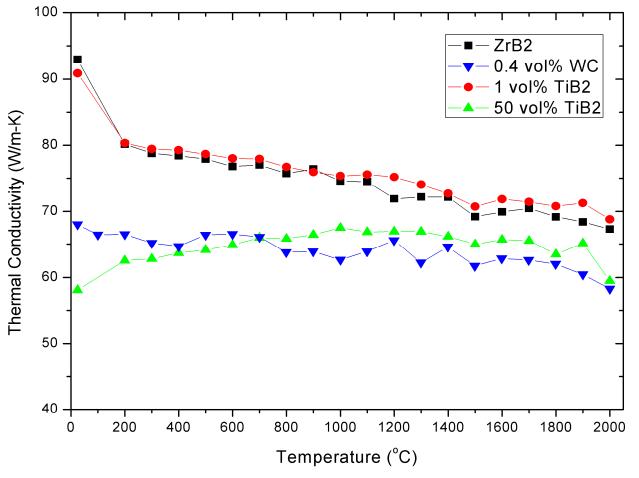
*W seems to affect the electron contribution (\ carrier concentration?)

‡Wiley, Manning, and Hunter, Journal of the Less Common Metals, 18 [2], 149-57, 1969



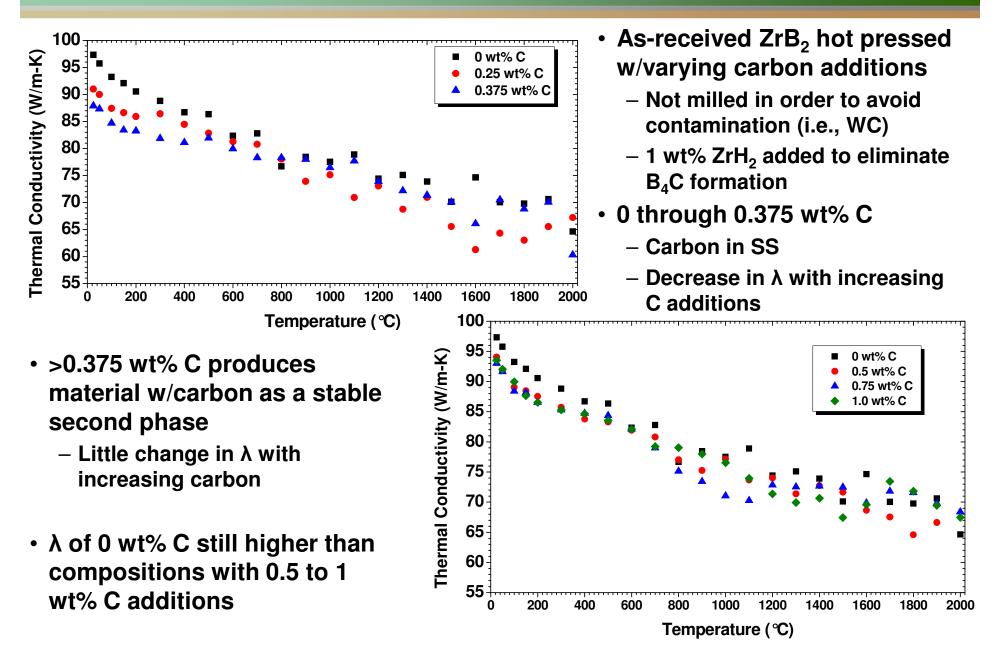
λ_{total} as a Function (Zr,Ti)B₂ (SS)

- (Zr,Ti)B₂ solid solution with 0 to 50 vol% TiB₂ additions
- λ_{total} decreases with increasing TiB₂ SS content
 - − Largest effect seen below 1000°C
 - Increase in λ with increasing temperature for 25 and 50 vol% TiB₂

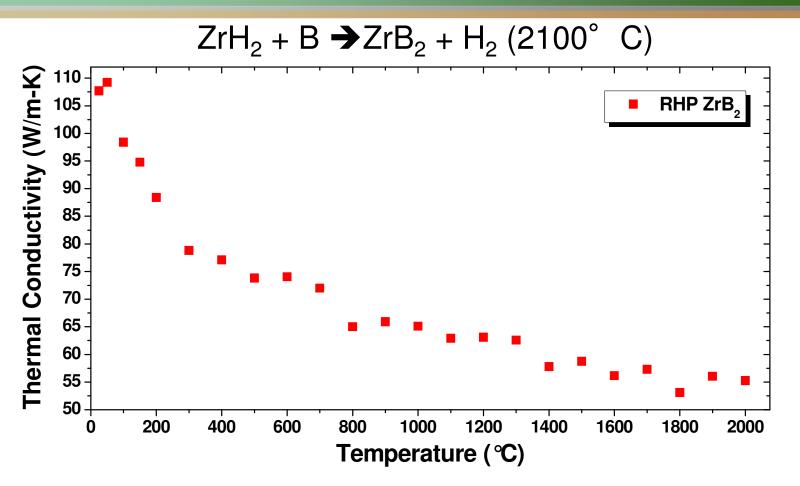


- Steady decrease in electronic portion of λ_{total} with increasing TiB₂ SS
- Little change to phonon contribution up to 10 vol% TiB₂ addition but 50 vol% reduced phononic portion to nearly zero

WC and TiB₂ Addition Comparison



- Not all additions have the same affect
 - $-\lambda$ decreased significantly with WC addition compared to TiB₂
 - -0.4 vol% WC provided similar λ as 50 vol% TiB₂



λ vs. Temperature – ZrB₂+C

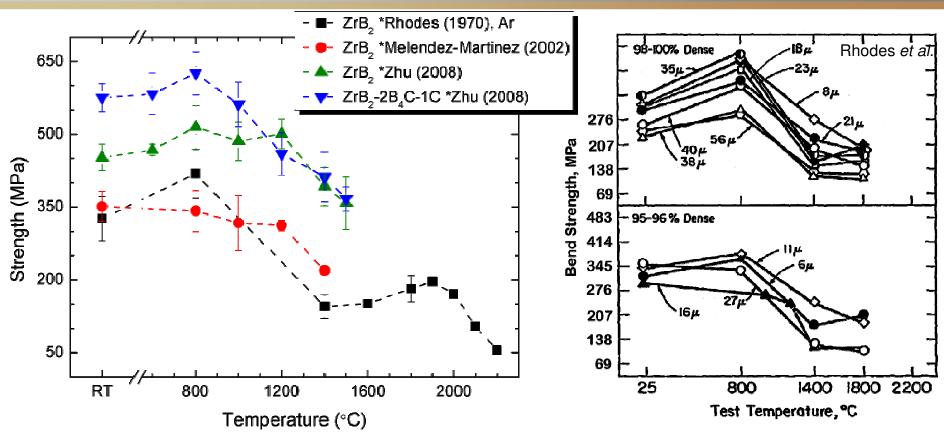
- ZrB₂ reactively hot pressed from ZrH₂ and B powders to 98.8% density of theoretical
- High conductivity achieved because of the high density and low impurity content

- $\boldsymbol{\lambda}$ strongly affected by impurities and second phases
- $\cdot \ \lambda$ dominated by the electron contribution
- High λ material
 - Few ways to increase λ
 - Produce fully dense material
 - Decrease impurities (reaction process)
 - Increase grain size

Possibilities for the future

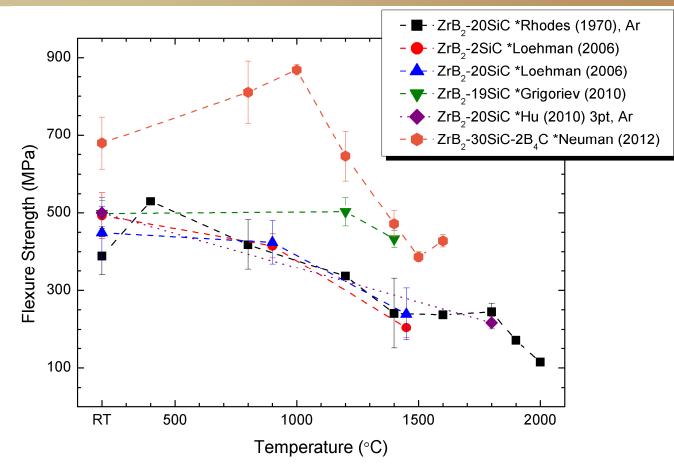
- Improve phonon conduction
 - Study isotope affects
- Increase electron conduction
 - Increase carrier concentration
 - Increase mean free path

- Low λ material
 - Many ways to lower $\boldsymbol{\lambda}$
 - SS additions (C, WC, TiB₂)
 - Second phases (SiC)
 - Increasing porosity
 - Phonon modes are easiest to disrupt
 - Research required to understand role of electron conduction

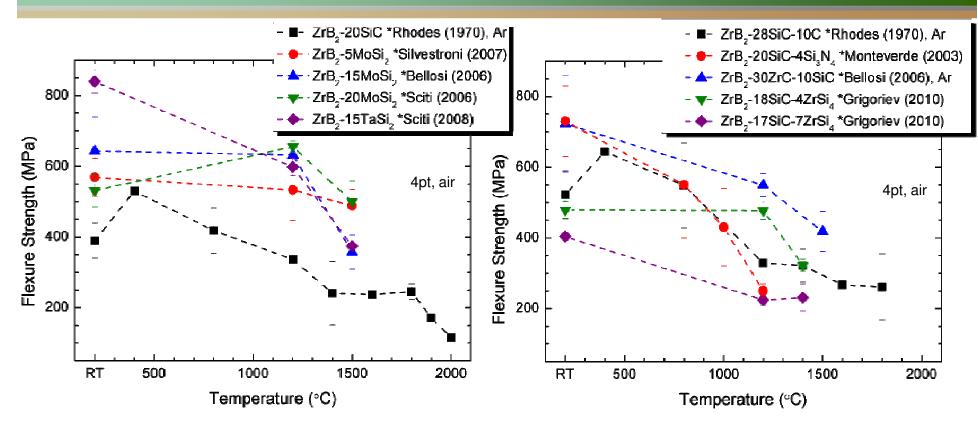


Flexure Strength of ZrB₂-Based UHTCs

ZrB₂ Strength vs. Temperature

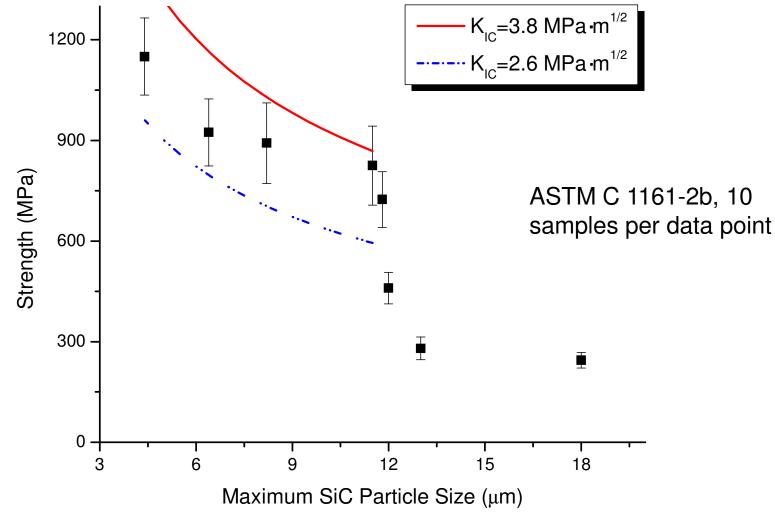


- Limited studies of ZrB₂ at elevated temperatures
 - Rhodes: various densities and grain sizes 4 pt, Ar
 - Melendez-Martinez: 87% dense, GS ~20µm 4 pt, air
 - Zhu: >97% dense, GS \sim 10 μm 4pt, air, TEOS coated
- Strength of ZrB₂ decreases for increasing grain size for all temperatures


ZrB₂-SiC Strength vs. Temperature

- SiC additions to ZrB₂ increase strength at all temperatures
 - Grain size and residual stress effect
- Currently no strength data for ZrB₂-SiC system above 2000^oC
- Effect of grain size on high temp strength has not been investigated

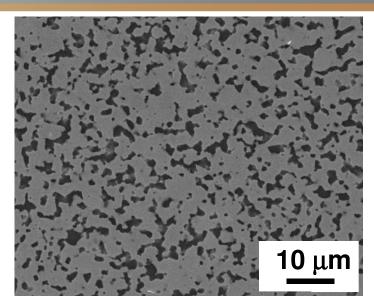
Other Additions to ZrB₂

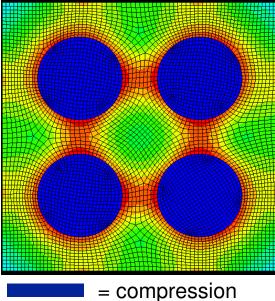


- Silicide additions can offer improved strength over SiC additions
- Lower melting point than ZrB₂-SiC eutectic (2270^oC)
 - MoSi₂ 2030ºC; TaSi₂ ~2200ºC
- Mechanical behavior of ZrB₂ with silicide additions above 1500°C is unkown

• SiC particulate phase fit as an ellipse

Watts, Hilmas, and Fahrenholtz, J. Am. Ceram. Soc., 94(12) 4410-4418 (2011).

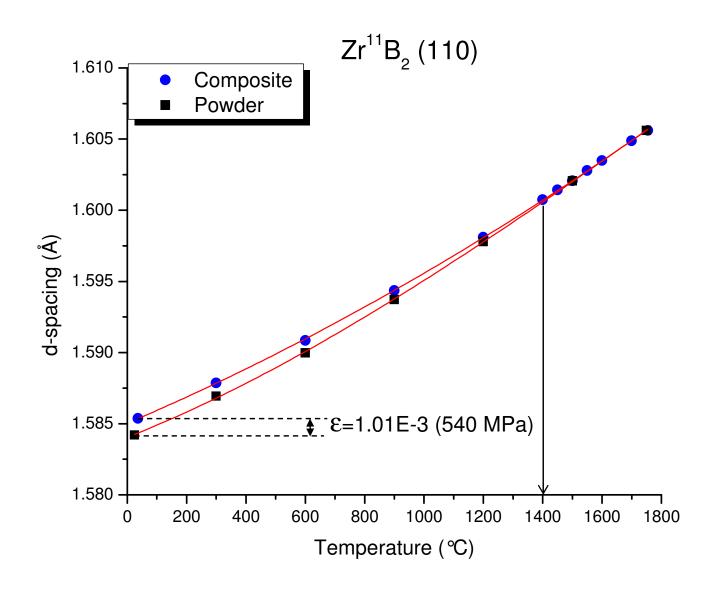



Residual Stresses in ZrB₂-SiC

- ZrB₂-30 vol% SiC(6H)
 - Advantageous properties (high RT σ)
 - ~2 ppm/ºC difference in CTE
 - Thermal residual stresses upon cooling after hot pressing or sintering
 - SiC in compression
 - ZrB₂ in tension

Residual stresses

- Neutron diffraction using Zr¹¹B₂-30%SiC
 - Milled with SiC milling media
- ZrB₂ is in tension (455 MPa)
- SiC in compression (-878 MPa)
- Stresses accumulate below 1400°C
- Can the stresses be manipulated to improve thermomechanical properties?



= tension

Neutron Diffraction – ZrB₂ Phase

- Calculated stresses vs. crystallographic directions
 - Stiffness coefficients from Okamoto (ZrB_2) and Yao (α -SiC)

Okamoto, *Journal of Applied Physics*, 93 (1), 2003 Yao, *Journal of the American Ceramic Society*, 90 (10), 2007

			—		_		
(h k	I)	E _{hkl} (GPa)	3	Calculated σ (MPa)		(h	ł
1 0	1	553	9.00E-04	498		1	(
0 0	2	390	7.18E-04	280		1	(
1 1	0	533	1.01E-03	540		0	(
1 1	1	557	9.61E-04	535		1	(
1 1	2	544	8.80E-04	478		1	(
3 0	0	533	1.01E-03	539		1	-
1 0	4	419	7.45E-04	313		1	
			Average	455	· L		

 $Zr^{11}B_2$

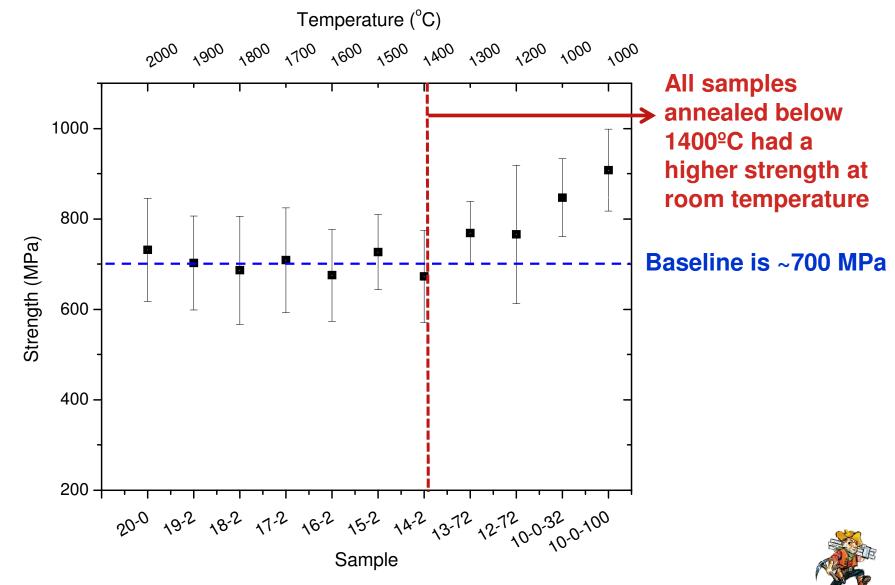
SiC

(h	k	I)	E _{hkl} (GPa)	3	Calculated σ (MPa)
1	0	0	484	-1.94E-03	-937
1	0	1	474	-1.94E-03	-918
0	0	6	556	-1.51E-03	-842
1	0	2	452	-1.93E-03	-872
1	0	8	437	-1.87E-03	-820
1	1	0	484	-1.94E-03	-939
1	1	6	426	-1.92E-03	-815
Average -878					

Tensile

Compressive

J. Watts, G. Hilmas, W. Fahrenholtz, D. Brown, B. Clausen, Journal of the European Ceramic Society, **31**, 2011


Annealing Study

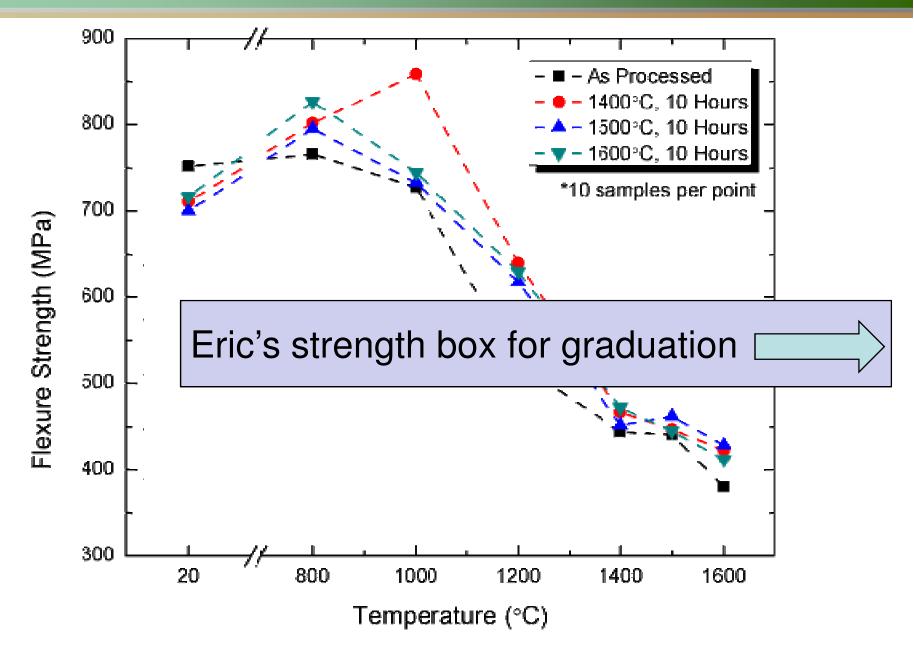
ZrB₂-30vol% SiC (milled using SiC media)

Sample Designation	Annealing Temperature (ºC)	Time at Temperature (Hrs)	Cooling Rate (ºC/min)	Applied Pressure (MPa)
20-0	2000	0	30	0
19-2	1900	2	30	0
18-2	1800	2	30	0
17-2	1700	2	30	0
16-2	1600	2	30	0
15-2	1500	2	30	0
14-2	1400	2	30	0
13-72	1300	72	30	0
12-72	1200	72	30	0
10-0-32	1000	0	2 (below 1500 ^o C)	32
10-0-100	1000	0	2 (below 1500 ^o C)	100

RT Flexure Strength after Annealing

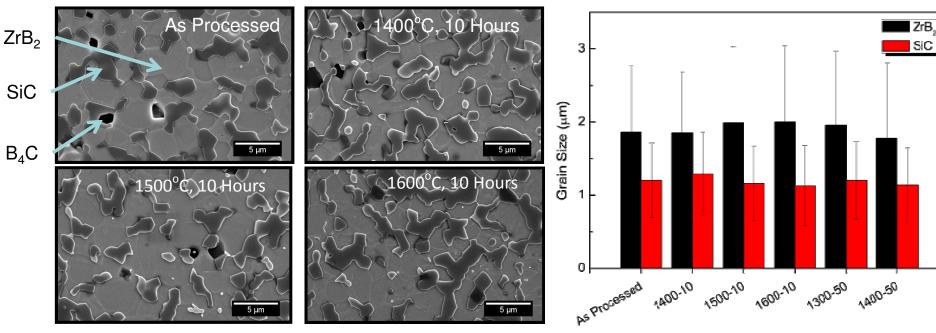
ASTM C 1161-02b, 4-point bending, 10 samples per data point

- Sample preparation
 - ZrB₂ (H.C. Starck, Grade B)
 - 30 vol% α -SiC powder (H.C. Starck, UF-10)
 - 2 wt% B₄C (H.C. Starck, HD-20)
 - Milled using WC-6%Co milling media (0.24 wt% WC)
 - Hot pressed at 1950°C/32 MPa


Annealing

- Temperatures from 1300 to 1600°C
- Times of 10 to 50 hours
- Ar overpressure (1 atm)

σ_{f} vs. Temperature after Heat Treatment

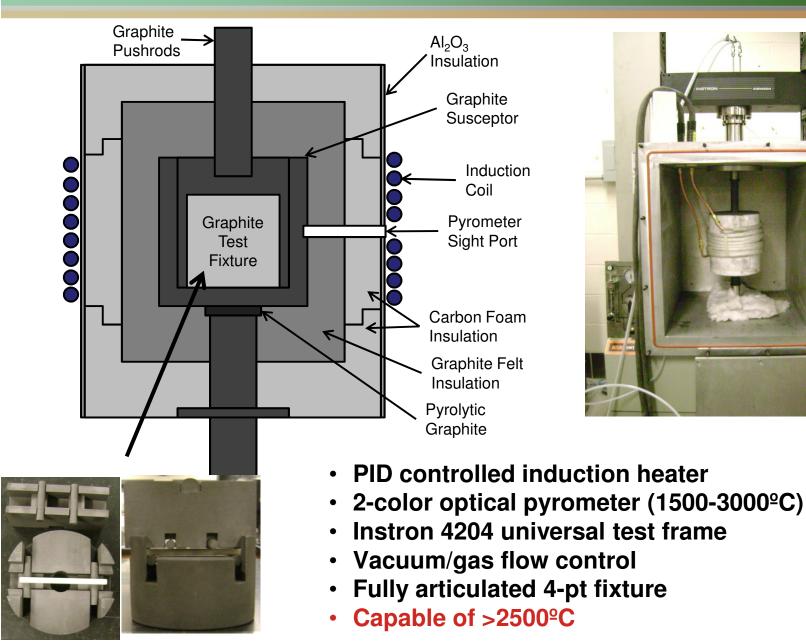


Heat Treatment Microstructure

Microstructures

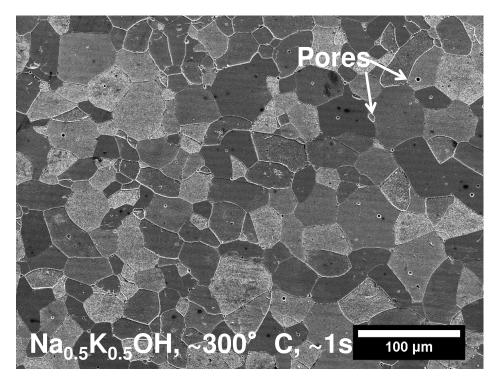
Grain Size

Heat Treatment Condition ("Temperature(°C) - Time (Hours)")


- No variation in grain size
 - \sim 1.9±1.0 µm for ZrB₂
 - \sim 1.2±0.5 µm for SiC

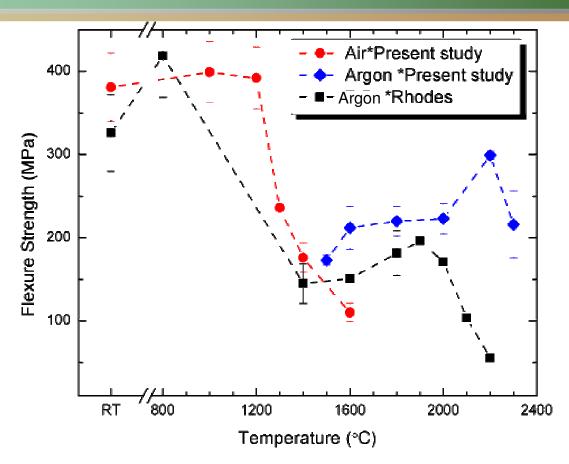
- No additional phases identified by XRD
- EDS shows no additional discreet phases present
 - i.e. no W-rich phase typical of ZrB₂-SiC ceramics produced by milling with WC media

2500° C+ Environmental Chamber

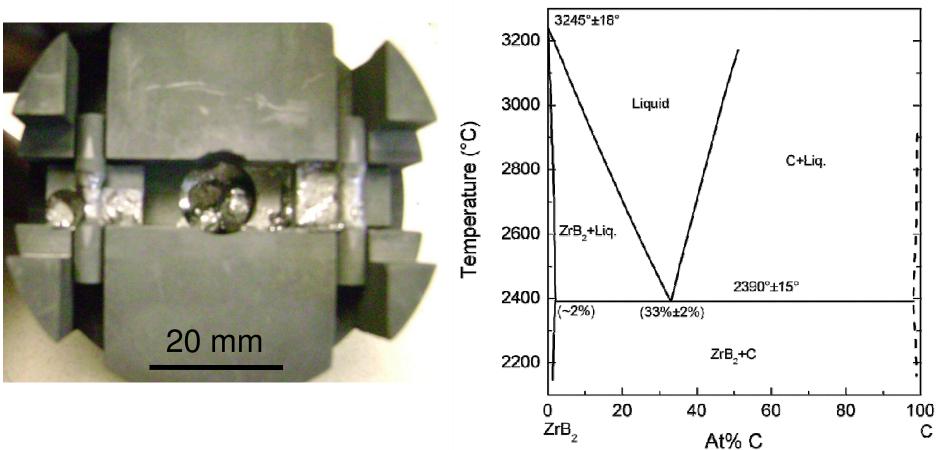


ZrB₂ Microstructure

ZrB₂ + 0.5 wt% C, hot pressed at 2150°C/1 hour, 32 MPa, He


 Held for extended time at 2150°C to grow grains and reduce tendency for creep at temperatures over 1800°C (as observed by Rhodes *et al.*)

- Density
 - 6.04 g/cc, >99.2% RD
- Grain Size
 - 19.7 ± 13.0 μm (>2000 grains)
- Strength in 4-point bending
 - Room temp (ASTM C1161-02c)
 - Elevated temp (ASTM C1211-02c)
 - Air
 - TEOS sol coated, heat treated to 700°C/1hour in air, repeated 4x
 - Argon
 - 100°C/min to 200°C below temperature, then 50°C/ min to temperature, hold for 5 min
 - Variable crosshead speed


ZrB₂ Strength vs. Temperature

- Strength in air: ~380 MPa at RT, ~400 MPa at 1200°C, ~110 MPa at 1600°C
 - Oxidation affects strength above 1300° C
- Strength in Ar: ~170 MPa at 1500°C, ~300 MPa at 2200°C, ~220 MPa at 2300°C
- Strength of material in present study is greater than historical material, particularly above 2000°C, with similar grain size and density

Testing Limits

- 2400° C test resulted in a melted flexure bar
- ZrB₂ C eutectic at 2390°C Verified!
- The solution for higher temperature testing?:
 - Use ZrB₂-ZrC (2660°C eutectic) or ZrB₂-ZrC_{0.88} (2830°C eutectic)

Summary – Mechanical Properties

- Strength of ZrB₂-30% SiC improved by annealing
 - Can be annealed to affect the stress state
 - Appropriate annealing temperature affected by impurities
 - Increased to >900 MPa from ~700 MPa after annealing at 1000°C under a 100 MPa applied load
 - Milled using SiC media
 - At a test temperature of 1600°C: ~375 MPa (as-processed) and ~440 MPa (annealed for 10 hours at 1500°C)
 - Milled using WC media
- Strength of ZrB₂ (~20 μm grain size)
 - ~380 MPa at RT
 - Strength decreased rapidly in air above 1200° C due to oxidation despite protective silica coating...need testing in Ar to verify behavior in this region (near stress relaxation temp.!)
 - ~170 MPa at 1500°C & increased to ~300 MPa at 2200°C (Ar)

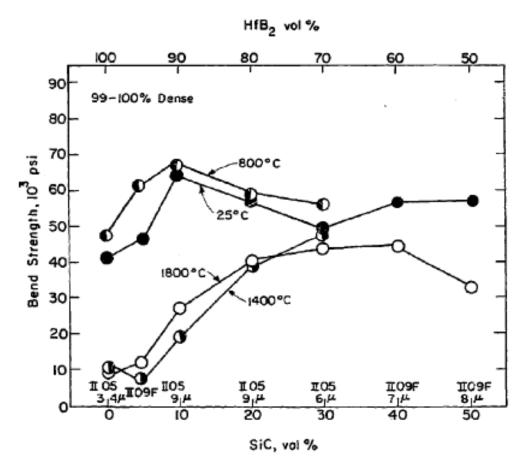
Acknowledgements

- Thermal property studies
 - Dr. Matt Thompson, now at St. Gobain-Norpro
 - Greg Harrington, PhD candidate
 - Jason Lonergan, PhD student

Mechanical property studies

- Prof. Jeremy Watts, now a Research Professor at Missouri S&T
- Eric Neuman, PhD candidate

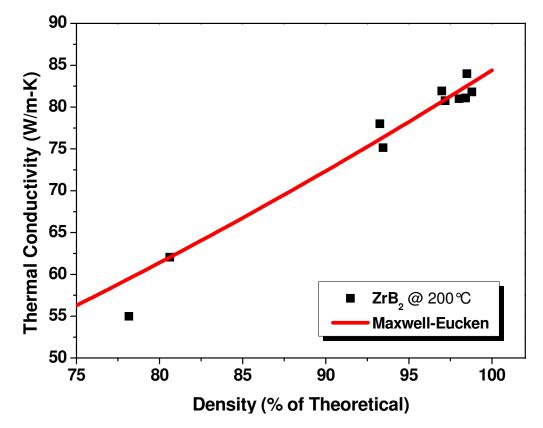
- UHTC community needs to be testing properties to "ultra-high" temperatures
 - We must report processing procedures, grain size(s), impurities, other microstructural effects
- UHT test capabilities at Missouri S&T
 - Thermal diffusivity to 2800° C
 - well, perhaps to 2500° C
 - Electrical resistivity to 1200° C
 - Concept for increasing capability to 2000° C
 - Four-point bending to 2800° C
 - well, perhaps to 2600° C
 - Testing in a simulated hypersonic environment to 2800° C
 - well, perhaps we don't have this capability...or do we?



Mechanical Properties

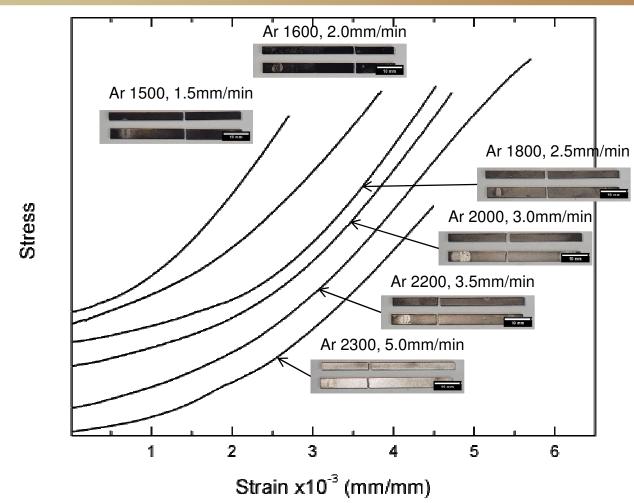
- Strength tested up to 1800° C
- Range of relative density values
- ZrB₂ and HfB₂
 - Nominally pure
 - SiC additions
 - Carbon additions
- Porosity reduces strength despite a decrease in grain size
- SiC reduces grain growth
- Carbon improves resistance to crack propagation and reduces elastic modulus

W.H. Rhodes, E.V. Clougherty, and D. Kalish "Research and Development of Oxidation-Resistant Diborides: Mechanical Properties" AFML-TR-68-190 Part II, Vol IV.



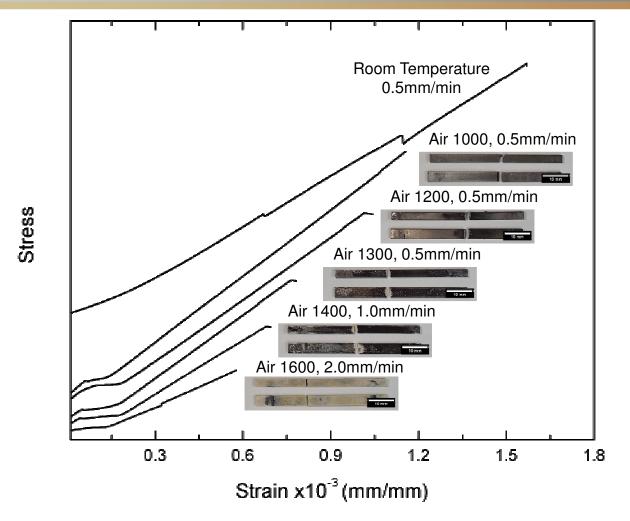
50 ksi ≈ 350 MPa

λ vs. Density



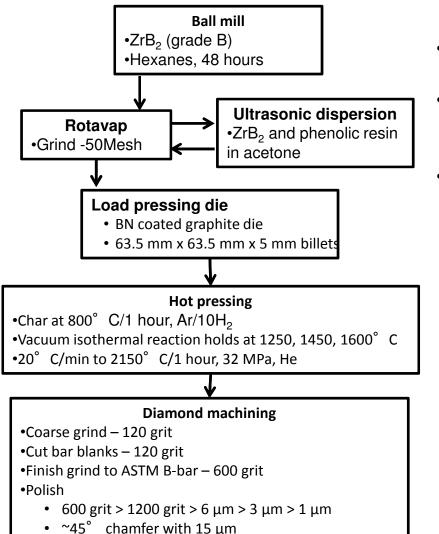
- Density a large factor in thermal conductivity
 - Has to be accounted for when researching affects of other variables
 - Can be corrected using Maxwell-Eucken equation
- Maximizing density is crucial for obtaining highest conductivity
- Depending on mechanical requirements density can be used to lower conductivity for specific applications

Argon Stress-Strain Curves



- No visible oxidation scale
- Linear elastic failure
 - Test curves for samples tested in argon are not compliance corrected

Stress-Strain Curves



- Linear elastic failure for all temperatures
 - No bending observed in bars after testing
- Significant oxidation damage visible at 1400 and 1600° C

ZrB₂ + 0.5 wt% C Processing

- Density
 - Archimedes method (ASTM C373-88)
- Grain Size
 - Etched Na_{0.5}K_{0.5}OH, ~300° C, ~1s
 - Image analysis, >2000 grains
- Flexural Strength
 - Ambient (ASTM C1161-02c)
 - Elevated temperature (ASTM C1211-02c)
 - Air
 - TEOS sol coated, heat treated to 700° C/1hour in air, repeated 4x
 - 10° C/min to temperature, hold for 10 min
 - Argon
 - 100° C/min to 200° C below temperature, then 50° C/ min to temperature, hold for 5 min
 - ASTM B-bar configuration, 4-point bend, fully articulated fixture
 - Variable crosshead speed

Conclusions

- Thermal Properties
 - Thermal conductivity of "phase-pure", dense ZrB₂ is:
 - * 110 W/m•K at RT and 55 W/m•K at 2000° C
 - SiC additions decrease thermal conductivity ZrB₂ is:
 - + 110 W/m+K at RT and 55 W/m+K at 2000 $^\circ\,$ C
- Mechanical Properties
 - Flexure strength of ZrB2-30%SiC:

