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Goals and Outline

• Goals

– Understand the role of impurities (i.e., C), additives (i.e., SiC), 
isotopes (10B or 11B in ZrB2) on the thermal and mechanical 
properties of ZrB2 based ceramics

• Outline

– Thermal Conductivity of ZrB -based Ceramics– Thermal Conductivity of ZrB2-based Ceramics

• Historical studies vs. modern research studies

• Missouri S&T studies – Thermal conductivity to 2000ºC+

– Flexure Strength of ZrB2-based Ceramics

• Historical studies vs. modern research studies

• Missouri S&T studies – Annealing; Flexure strength to 2300ºC+

– Conclusions



Thermal Conductivity 

of ZrB2-Based UHTCs



Literature– ZrB2 Thermal Conductivity

Reference Year
Relative 

Density (%)

Test
Temperatures 

(°°°°C)
Special 

Considerations

Tye and 
Clougherty1 1970 100 100-1000 -

Tye and 
Clougherty1 1970 90 100-1000 "fluid energy milled"

Branscomb and 
Hunter2 1971 97.4 200-1300

0.92% impurity 
contentHunter2 1971 97.4 200-1300 content

Fridlender et al.3 1980 92 1000-2200 vibrogrinding (60hrs)
Andrievskii et al.4 1980 95 100-900 -

Zimmermann et al.5 2008 100 25-1327 attrition milled w/WC

Zhang et al.6 2011 92.5 25-427
reaction processed 

(Zr+B)
Thompson et al.7 2012 100 400-2000 attrition milled w/WC

1Tye and Clougherty, Proceeding of the Fifth Symposium of Thermophysical Properties, 396-401, 1970
2Branscomb and Hunter, Journal of Applied Physics, 42, 2309-2315, 1971
3Fridlender, Neshpor, Ordan’yan, and Unrod,  Teplofizika Vysokikh Temperatur, 17, 1210-1215, 1980
4Andrievskii, et al., Soviet Powder Metallurgy and Metal Ceramics, Vol 19(2), 27-29, 1980
5Zimmermann, Hilmas, Fahrenholtz, Dinwiddie, Porter, and Wang, J. of the American Ceramic Society, 91, 1405-1411, 2008
6Zhang, Pejaković, Marschall, and Gasch, Journal of the American Ceramic Society, 94, 2562-2570, 2011
7Thompson, Fahrenholtz, and Hilmas, Journal of the American Ceramic Society, 95, 1077-1085, 2012



Literature– ZrB2 Thermal Conductivity
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• Broad range of reported conductivity values

• Slope of conductivity vs. temperature varies between positive and 
negative
– Highest conductivities have negative slopes

– Materials with positive slopes tend to have been milled (WC contamination)
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Literature - ZrB2+SiC Conductivity
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• Large variation in 20 vol% conductivity values 
– 35 W/m•K difference @ 200ºC

– Multiple factors influencing overall conductivity

• Increasing SiC additions decrease thermal conductivity

• Decrease in conductivity w/temperature shows similar slope between 
different literature sources
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Missouri S&T – λ Thermal Conductivity

• Total thermal conductivity, λtotal = D·Cp·ρ
– Laserflash thermal analysis, 25 - 2000°°°°C in Ar

• Diffusivity (D) – evaluated using Clark and Taylor method

• Heat capacity (Cp) – comparison method and/or NIST JANAF

• Density (ρ) obtained using Archimedes’ method + expansion w/ temp.

• Determine electronic (λelectron) & phononic (λphonon) 
contributions contributions 

– λtotal = λelectron + λphonon where λelectron = 2.44x10-8σT (Wiedemann-Franz)

– Electrical conductivity (σ) measured at temp T by 4-point probe

• Tailor λ for UHTC applications
– Maximize λ

• Hypersonic vehicle leading edges

• Studying “phase pure” ZrB2 (reactive processing and isotope affects)

– Minimize λ

• Hypersonic thermal protection systems and high temperature refractories

• Researching solid solution and second phase additives 



λ for As-Received ZrB2

• Hot pressed as-received ZrB2 (H.C. Starck, Grade B)

• Electron contribution dominates thermal conductivity in ZrB2

• Phonon contribution decreases to nearly zero above 1200ºC



λ of As-Received ZrB2 vs. ZrB2 with WC

• WC contamination typically 
obtained when attrition milling 

– λtotal decreases for both 1 and 2 wt% 
WC additions

– ~50 W/m-K decrease at 200°°°°C

– ~10 W/m-K decrease at 2000°°°°C
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• WC additions decrease both λelectron

and λphonon contributions to λtotal

below the Debye temperature

• Above Debye, electron contribution 
is decreased by WC

Contribution

~640°C
‡
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*W seems to affect the electron contribution  (↓ carrier concentration?)

‡Wiley, Manning, and Hunter, Journal of the Less Common Metals, 18 [2], 149-57, 1969



λtotal as a Function (Zr,Ti)B2 (SS)

• (Zr,Ti)B2 solid solution with 0 to 50 vol% TiB2 additions

• λtotal decreases with increasing TiB2 SS content

– Largest effect seen below 1000ºC

– Increase in λ with increasing temperature for 25 and 50 vol% TiB2



λelectron and λphonon for TiB2 Additions

• Steady decrease in electronic portion of λtotal with increasing TiB2 SS 

• Little change to phonon contribution up to 10 vol% TiB2 addition but 
50 vol% reduced phononic portion to nearly zero



WC and TiB2 Addition Comparison

• Not all additions have the same affect

–λ decreased significantly with WC addition compared to TiB2

– 0.4 vol% WC provided similar λ as 50 vol% TiB2



λ vs. Temperature – ZrB2+C

• As-received ZrB2 hot pressed 
w/varying carbon additions

– Not milled in order to avoid 
contamination (i.e., WC)

– 1 wt% ZrH2 added to eliminate 
B4C formation

• 0 through 0.375 wt% C

– Carbon in SS

– Decrease in λ with increasing  55
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• >0.375 wt% C produces 
material w/carbon as a stable 
second phase

– Little change in λ with 
increasing carbon

• λ of 0 wt% C still higher than 
compositions with 0.5 to 1 
wt% C additions 

– Decrease in λ with increasing  
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High Purity Reaction Hot Pressed ZrB2
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ZrH2 + B �ZrB2 + H2 (2100°C)

• ZrB2 reactively hot pressed from ZrH2 and B powders to 98.8% density 
of theoretical

• High conductivity achieved because of the high density and low 
impurity content
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Summary – Thermal Conductivity

• High λ material

– Few ways to increase λ

• Produce fully dense material

• Decrease impurities (reaction 

• Low λ material

– Many ways to lower λ

• SS additions (C, WC, TiB2)

• Second phases (SiC)

• λ strongly affected by impurities and second phases

• λ dominated by the electron contribution

• Decrease impurities (reaction 
process)

• Increase grain size

– Possibilities for the future

• Improve phonon conduction

– Study isotope affects

• Increase electron conduction

– Increase carrier concentration

– Increase mean free path

• Second phases (SiC)

• Increasing porosity

– Phonon modes are 
easiest to disrupt

– Research required to 
understand role of 
electron conduction



Flexure Strength

of ZrB2-Based UHTCs



ZrB2 Strength vs. Temperature

Rhodes et al.

• Limited studies of ZrB2 at elevated temperatures
– Rhodes: various densities and grain sizes – 4 pt, Ar

– Melendez-Martinez: 87% dense, GS ~20µm – 4 pt, air

– Zhu: >97% dense, GS ~ 10µm – 4pt, air, TEOS coated

• Strength of ZrB2 decreases for increasing grain size for all 
temperatures



ZrB2-SiC Strength vs. Temperature

• SiC additions to ZrB2 increase strength at all temperatures
– Grain size and residual stress effect

• Currently no strength data for ZrB2-SiC system above 2000ºC

• Effect of grain size on high temp strength has not been investigated



Other Additions to ZrB2

4pt, air4pt, air

• Silicide additions can offer improved strength over SiC additions

• Lower melting point than ZrB2-SiC eutectic (2270ºC)

– MoSi2 - 2030ºC; TaSi2- ~2200ºC

• Mechanical behavior of ZrB2 with silicide additions above 1500ºC is 
unkown



SiC Particle Size/Shape Controls Strength

• SiC particulate phase fit as an ellipse

ASTM C 1161-2b, 10 
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Watts, Hilmas, and Fahrenholtz, J. Am. Ceram. Soc., 94(12) 4410-4418 (2011). 



Residual Stresses in ZrB2-SiC

• ZrB2-30 vol% SiC(6H)
– Advantageous properties (high RT σσσσ)

– ~2 ppm/ºC difference in CTE

• Thermal residual stresses upon cooling 
after hot pressing or sintering

• SiC in compression

• ZrB2 in tension 10 µµµµm• ZrB2 in tension

• Residual stresses
– Neutron diffraction using Zr11B2-30%SiC

• Milled with SiC milling media

– ZrB2 is in tension (455 MPa)

– SiC in compression  (-878 MPa)

– Stresses accumulate below 1400ºC

– Can the stresses be manipulated to 
improve thermomechanical properties?

10 µµµµm

= compression
= tension
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Calculated Stresses

• Calculated stresses vs. crystallographic directions
– Stiffness coefficients from Okamoto (ZrB2) and Yao (αααα-SiC)

Okamoto, Journal of Applied Physics, 93 (1), 2003
Yao, Journal of the American Ceramic Society, 90 (10), 2007

(h k l)
Ehkl

(GPa) ε
Calculated
σ (MPa)(h k l)

Ehkl
(GPa) ε

Calculated
σ (MPa)

Zr11B2 SiC

1 0 0 484 -1.94E-03 -937

1 0 1 474 -1.94E-03 -918

0 0 6 556 -1.51E-03 -842

1 0 2 452 -1.93E-03 -872

1 0 8 437 -1.87E-03 -820

1 1 0 484 -1.94E-03 -939

1 1 6 426 -1.92E-03 -815

Average -878

1 0 1 553 9.00E-04 498

0 0 2 390 7.18E-04 280

1 1 0 533 1.01E-03 540

1 1 1 557 9.61E-04 535

1 1 2 544 8.80E-04 478

3 0 0 533 1.01E-03 539

1 0 4 419 7.45E-04 313

Average 455

J. Watts, G. Hilmas, W. Fahrenholtz, D. Brown, B. Clausen, 
Journal of the European Ceramic Society, 31, 2011

Tensile Compressive



Annealing Study

Sample
Designation

Annealing
Temperature

(ºC)

Time at 
Temperature

(Hrs)

Cooling Rate
(ºC/min)

Applied
Pressure

(MPa)

20-0 2000 0 30 0

19-2 1900 2 30 0

18-2 1800 2 30 0

17-2 1700 2 30 0

ZrB2-30vol% SiC (milled using SiC media)

17-2 1700 2 30 0

16-2 1600 2 30 0

15-2 1500 2 30 0

14-2 1400 2 30 0

13-72 1300 72 30 0

12-72 1200 72 30 0

10-0-32 1000 0 2 (below 1500 ºC) 32

10-0-100 1000 0 2 (below 1500 ºC) 100
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Annealing Study – Different Composition

• Sample preparation
– ZrB2 (H.C. Starck, Grade B)

– 30 vol% αααα-SiC powder (H.C. Starck, UF-10)

– 2 wt% B4C (H.C. Starck, HD-20)

– Milled using WC-6%Co milling media (0.24 wt% WC)

– Hot pressed at 1950ºC/32 MPa

• Annealing
– Temperatures from 1300 to 1600ºC

– Times of 10 to 50 hours

– Ar overpressure (1 atm)



σσσσf vs. Temperature after Heat Treatment

• Heat treatment increases flexure strengths by 12% at 1600°°°°C

– 10% reduction in room temperature strength

• Heat treatment increases elastic modulus by 34% at 1600°°°°C

• Need additional heat treatments
- higher pressure
- Higher test temperatures

Eric’s strength box for graduation



Heat Treatment Microstructure

As Processed 1400oC, 10 Hours

1500
o
C, 10 Hours 1600

o
C, 10 Hours

ZrB2

SiC

B4C

Microstructures Grain Size

• No additional phases identified by XRD
• EDS shows no additional discreet phases present

• i.e. no W-rich phase typical of ZrB2-SiC 
ceramics produced by milling with WC media

• No variation in grain size
• ~1.9±1.0 µm for ZrB2
• ~1.2±0.5 µm for SiC



‘‘
‘‘‘

Graphite 
Test 

Fixture

Induction 
Coil

Graphite 
Susceptor

Al2O3
Insulation

Graphite 
Pushrods

Pyrometer 
Sight Port

2500°°°°C+ Environmental Chamber

Graphite Felt 
Insulation

Carbon Foam 
Insulation

Pyrolytic 
Graphite

• PID controlled induction heater
• 2-color optical pyrometer (1500-3000ºC)
• Instron 4204 universal test frame
• Vacuum/gas flow control
• Fully articulated 4-pt fixture
• Capable of >2500ºC



ZrB2 Microstructure

Pores

ZrB2 + 0.5 wt% C, hot pressed at 2150ºC/1 hour, 32 MPa, He  

• Density
– 6.04 g/cc, >99.2% RD

• Grain Size

– 19.7 ±±±± 13.0 µm (>2000 grains)
• Strength in 4-point bending

– Room temp (ASTM C1161-02c)
– Elevated temp (ASTM C1211-02c)

• Held for extended time at 2150ºC to 
grow grains and reduce tendency for 
creep at temperatures over 1800ºC (as 
observed by Rhodes et al.)

Na0.5K0.5OH, ~300°°°°C, ~1s

– Elevated temp (ASTM C1211-02c)
� Air

– TEOS sol coated, heat treated to 
700ºC/1hour in air, repeated 4x

� Argon  
– 100ºC/min to 200ºC below 

temperature, then 50ºC/ min to 
temperature, hold for 5 min

– Variable crosshead speed



ZrB2 Strength vs. Temperature

Argon

• Strength in air:  ~380 MPa at RT, ~400 MPa at 1200ºC, ~110 MPa at 1600ºC

– Oxidation affects strength above 1300°°°°C

• Strength in Ar:  ~170 MPa at 1500ºC, ~300 MPa at 2200ºC, ~220 MPa at 2300ºC

• Strength of material in present study is greater than historical material, 
particularly above 2000ºC, with similar grain size and density



Testing Limits

• 2400°°°°C test resulted in a melted flexure bar

• ZrB2 – C eutectic at 2390ºC – Verified!

20 mm

• The solution for higher temperature testing?:

- Use ZrB2-ZrC (2660ºC eutectic) or ZrB2-ZrC0.88 (2830ºC eutectic)



• Strength of ZrB2-30% SiC improved by annealing
– Can be annealed to affect the stress state

• Appropriate annealing temperature affected by impurities

– Increased to >900 MPa from ~700 MPa after annealing at 
1000ºC under a 100 MPa applied load

• Milled using SiC media

– At a test temperature of 1600ºC:  ~375 MPa (as-processed) and 

Summary – Mechanical Properties

– At a test temperature of 1600ºC:  ~375 MPa (as-processed) and 
~440 MPa (annealed for 10 hours at 1500ºC)

• Milled using WC media

• Strength of ZrB2 (~20 µm grain size)
– ~380 MPa at RT

– Strength decreased rapidly in air above 1200°°°°C due to 
oxidation despite protective silica coating…need testing in Ar 
to verify behavior in this region (near stress relaxation temp.!)

– ~170 MPa at 1500ºC & increased to ~300 MPa at 2200ºC (Ar)



• UHTC community needs to be testing 
properties to “ultra-high” temperatures
– We must report processing procedures, grain size(s), 

impurities, other microstructural effects

• UHT test capabilities at Missouri S&T 
– Thermal diffusivity to 2800°°°°C

Conclusions

– Thermal diffusivity to 2800°°°°C

• well, perhaps to 2500°°°°C

– Electrical resistivity to 1200°°°°C

• Concept for increasing capability to 2000°°°°C

– Four-point bending to 2800°°°°C

• well, perhaps to 2600°°°°C

– Testing in a simulated hypersonic environment to 

2800°°°°C 

• well, perhaps we don’t have this capability…or do we?
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• UHTC community needs to be testing 
properties to “ultra-high” temperatures
– We must report processing procedures, grain size(s), 

impurities, other microstructural effects

• UHT test capabilities at Missouri S&T 
– Thermal diffusivity to 2800°°°°C

Conclusions

– Thermal diffusivity to 2800°°°°C

• well, perhaps to 2500°°°°C

– Electrical resistivity to 1200°°°°C

• Concept for increasing capability to 2000°°°°C

– Four-point bending to 2800°°°°C

• well, perhaps to 2600°°°°C

– Testing in a simulated hypersonic environment to 

2800°°°°C 

• well, perhaps we don’t have this capability…or do we?



Mechanical Properties

• Strength tested up to 

1800°°°°C

• Range of relative density 
values

• ZrB2 and HfB2

– Nominally pure

– SiC additions– SiC additions

– Carbon additions

• Porosity reduces strength 
despite a decrease in grain 
size

• SiC reduces grain growth

• Carbon improves resistance
to crack propagation and 
reduces elastic modulus

W.H. Rhodes, E.V. Clougherty, and D. Kalish “Research and 
Development of Oxidation-Resistant Diborides:  Mechanical Properties” 
AFML-TR-68-190 Part II, Vol IV. 

50 ksi ≈ 350 MPa



λ vs. Density 

• Density a large factor in 
thermal conductivity

– Has to be accounted for when 
researching affects of other 
variables

– Can be corrected using 
Maxwell-Eucken equation

• Maximizing density is crucial 70
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• Maximizing density is crucial 
for obtaining highest 
conductivity

• Depending on mechanical 
requirements density can be 
used to lower conductivity for 
specific applications
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Ar 1500, 1.5mm/min

Ar 1600, 2.0mm/min

Ar 1800, 2.5mm/min

Ar 2000, 3.0mm/min

Argon Stress-Strain Curves

Ar 2200, 3.5mm/min

Ar 2300, 5.0mm/min

• No visible oxidation scale

• Linear elastic failure
– Test curves for samples tested in argon are not compliance corrected



Stress-Strain Curves

Air 1000, 0.5mm/min

Air 1200, 0.5mm/min

Air 1300, 0.5mm/min

Room Temperature
0.5mm/min

• Linear elastic failure for all temperatures
– No bending observed in bars after testing

• Significant oxidation damage visible at 1400 and 1600°°°°C

Air 1400, 1.0mm/min

Air 1600, 2.0mm/min



ZrB2 + 0.5 wt% C Processing

Ball mill

•ZrB2 (grade B)
•Hexanes, 48 hours

Rotavap
•Grind -50Mesh

Ultrasonic dispersion 
•ZrB2 and phenolic resin 
in acetone

Load pressing die
• BN coated graphite die

• 63.5 mm x 63.5 mm x 5 mm billets

• Density
– Archimedes method (ASTM C373-88)

• Grain Size

– Etched Na0.5K0.5OH, ~300°°°°C, ~1s
– Image analysis, >2000 grains

• Flexural Strength
– Ambient (ASTM C1161-02c)
– Elevated temperature (ASTM C1211-02c)

Hot pressing

•Char at 800°C/1 hour, Ar/10H2
•Vacuum isothermal reaction holds at 1250, 1450, 1600°C

•20°C/min to 2150°C/1 hour, 32 MPa, He

• 63.5 mm x 63.5 mm x 5 mm billets

Diamond machining

•Coarse grind – 120 grit

•Cut bar blanks – 120 grit

•Finish grind to ASTM B-bar – 600 grit

•Polish

• 600 grit > 1200 grit > 6 μm > 3 μm > 1 μm

• ~45° chamfer with 15 μm

– Elevated temperature (ASTM C1211-02c)
� Air

– TEOS sol coated, heat treated to 

700°°°°C/1hour in air, repeated 4x
– 10°°°°C/min to temperature, hold for 10 

min

� Argon  
– 100°°°°C/min to 200°°°°C below 

temperature, then 50°°°° C/ min to 
temperature, hold for 5 min

– ASTM B-bar configuration, 4-point bend, 
fully articulated fixture

– Variable crosshead speed



Conclusions

• Thermal Properties
– Thermal conductivity of “phase-pure”, dense ZrB2 is:

• 110 W/m•K at RT and 55 W/m•K at 2000°°°°C

– SiC additions decrease thermal conductivity ZrB2 is:

• 110 W/m•K at RT and 55 W/m•K at 2000°°°°C

• Mechanical Properties• Mechanical Properties
– Flexure strength of ZrB2-30%SiC:
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