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Introduction

Institute of Materials Engineering

“A major centre of materials engineering and expertise in Australia 

with a multidisciplinary team of scientists and engineers”

Materials for Extreme Environments

Radiation, Elevated Temperature, High Stress and Corrosion 
Fission and Fusion Applications
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• Nuclear Power will play a vital role in realising 
a clean energy future

– Lowest cost, low emission technology for 
producing baseload power

– Currently generates 30% of baseload power in 
EU

Introduction

– Currently generates 30% of baseload power in 
EU

– Two nuclear power plants to be built at Vogtle, 
GA (First in US in 35 years)

• Currently, worldwide, there are:

– 433 nuclear reactors in operation
– 63 nuclear reactors under construction
– 160 nuclear reactors in planning

Source: http://www.world-nuclear.org/info/reactors.html

Olkiluoto-3, Finland Source: theage.com.au
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Background

• Generation IV initiative (GIF) lauched by US DOE in 2000
– 10 Member Nations + Euratom
– Aim: Design and develop a new generation, of energy efficient, sustainable, safe and 

reliable, proliferation resistant nuclear reactors by 2030
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Background

Proposed Gen-IV Reactor Designs

Reactor System Coolant Neutron Spectrum
Core Outlet 

Temperature (ºC)

Pressure

(High = 7-15MPa)

Very High

Temperature Reactor 

(VHTR)

Gas 

(eg. He)
Thermal >900 High

Gas Cooled Fast 

Source: Murty et al., 2008

Gas Cooled Fast 

Reactor
Gas (eg. He) Fast ~850 High

Sodium Cooled Fast 

Reactor (SFR) 

Molten Salt 

(fluoride salts)
Fast 700-800 Low

Lead Cooled Gas 

Reactor (LFR)

Liquid Metal 

(eg. Pb, Pb-Bi)
Fast 550-800 Low

Molten Salt Reactor 

(MSR)

Liquid Metal 

(Na)
Thermal ~550 Low

Supercritical water-

cooled reactor 

(SCWR)

Water Thermal/Fast 350-620 Very High
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– Materials exposed to

• Higher temperatures

• Higher neutron doses

• High stresses

• Extremely corrosive 

Background

Proposed Gen-IV Reactor Designs

• Extremely corrosive 
environments

– Additional radiation-induced 
material effects

• 1D/2D and 3D Defects 

• Segregation

• Creep

• Diffusion 

• Precipitation

• Volumetric Swelling
Source: Guerin et al., 2009
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Background

• Reactor Technology Challenges

– Availability of durable, radiation tolerant materials
– Sustainability & waste disposal
– Economics

Proposed Gen-IV Reactor Designs

Source: Buschow et. al, 2001

– Economics
– Safety and reliability
– Proliferation resistance & physical protection

• Radiation Tolerant Materials

– Dimensional stability under irradiation

– Large interfacial area

– Low defect mobility

– Good recovery from irradiation induced defects

Displacement Cascade

(○ -vacancies; ● interstitials)
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Research Motivation

• Many reactor components in proposed Generation IV 
systems will require high-strength interfacial bonding for 
maximised performance

• Several refractory non-oxide ceramics are proposed for 
application in Gen-IV reactorsapplication in Gen-IV reactors

– SiC, TiC, ZrC

– Applications: heat exchangers, thermal insulations, 
core-reactor components and high thermal load 
components

• A UHTC joined to a metallic material 

• exhibits high refractoriness

• retains structural integrity of the underlying 
metallic substrateANSTO OPAL Reactor Core

Source: ansto.gov.au

8



• A promising UHTC Gen-IV material

– Diffusion barrier layer on TRISO fuel in earlier Generation GFRs

– Proposed as a fuel matrix component in Gen-IV GFR

– Other potential applications in elevated temperature nuclear environments

• Key Nuclear Properties

– Low neutron absorption cross section

Zirconium Carbide

– Low neutron absorption cross section

– High melting point (~3420ºC)

– Recovery from irradiation induced defects

– Resistance to attack from fissile products

• Crystal Structure

– Interstitial carbide

– NaCl, B1 FCC structure

– Stoichiometry: ZrC0.55 to ZrC0.98

• Major limitation: low fracture toughness
ZrC NaCl Structure 
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• Zircaloy-4, Zircaloy-2 (Zr+Sn), Zr-Nb

• Nuclear Applications

– Cladding, pressure tubes and structural 
components

• Key Nuclear properties

Zirconium Alloys

– Low neutron absorption cross section

– Excellent corrosion resistance

– Good mechanical properties

• HCP Crystal Structure (@RT)

– Strong anisotropy

– α → β transformation ~850°C

• Limited to operation at ~400°°°°C in nuclear 
applications due to creep/embrittlement

Zircaloy Cladded Nuclear Reactor Fuel
Source: cameco.com
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Joining ZrC/Zircaloy-4

Mechanical Chemical

Solid State Liquid state

Bolting
Screw thread

Shrink
fitting

Ultrasonic
Welding

Anodic
Bonding

Diffusion
Bonding

Gas-metal
Eutectic Bonding

Glass-
ceramics

Brazing Adhesives

Source: Fernie et. al . 2009

Method: Solid State Diffusion Bonding

• Usually carried out in a HUP or HIP

• Structure, CTE mismatch and surface roughness important

• Zircaloy-4/ZrC CTE mismatch is relatively low

• Key Steps

(a) asperity contact

(b) yielding under large localised stresses

(c) deformation and diffusion mass transfer 

(d) removal of interfacial voids and bond formation

Source: Fernie et. al . 2009
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• Preparation

– Zirconium Carbide
– ~2% Hf, 3-5 micron APS
– Cold Uniaxially Pressed, HUP, HIP
– No sintering aids
– Ø25mm size, 2mm thick

Stage 1 Stage 2

Process HUPing HIPing

Temperature 2000ºC 2000ºC

Joining ZrC/Zircaloy-4

ZrC Processing Steps

– Ø25mm size, 2mm thick
– Grinding/polishing steps to 1µm diamond 

surface finish

– Zircaloy-4
– Zr-1.56Sn
– Hot rolled, annealed, blasted & pickled
– Ø25mm size, 3mm thick
– Grinding polishing steps to 1µm surface 

diamond finish

Temperature 2000ºC 2000ºC

Pressure 20MPa 100MPa

Bulk Density 
after 

Processing 

(ASTM C20)

~96.5 ~99%
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Joining ZrC/Zircaloy-4

ZrC
Zircaloy-4

ZrC

• Samples joined in hot uniaxial press, 0.01Pa vacuum, no interlayer
• Processing parameters: 1300ºC, 40MPa
• Void-free solid-state diffusion bond produced
• Macro-deformation of Zircaloy-4 during joining process

ZrC

Zircaloy-4

Zircaloy-4
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Zircaloy-4

Zircaloy-4

Diffusion Couple

Results

• BSE SEM Microscopy

ZrC

ZrC
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ID Elemental wt%

O Sn Hf

1 1.99 0.75

Zircaloy-4

Results

EDS: Minor Elements1

2

Zircaloy-4

2 2.17 1.81

3 3.07

4 1.36 2.37

5 1.18 2.36

ZrC

15
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BSE Image

ZrC



Zircaloy-4

Diffusion Couple
Results

A B

• Observations: EDS Linescan

BSE Image

ZrC

ZrC

– Higher [O], [Sn] in Zircaloy-4

– Evidence of Hf diffusion into 
Zircaloy-4

– Marked changes in [Sn], [Hf] 
near interlayer

17
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Counts

100000

200000

 XP02505

Results

• X-ray Diffraction 

Position [°2Theta]

10 20 30 40 50 60 70

0

P o s i t i o n  [ °2 T h e t a ]

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

 P e a k  L i s t

 0 3 - 0 6 5 - 3 3 6 6

 0 3 - 0 6 5 - 0 9 7 3

 0 0 - 0 0 8 - 0 4 1 5

Zirconium

Zirconium Carbide

Graphite

– Zr and ZrC presence confirmed
– Free carbon also detected
– Need smaller beam size for more  

accurate resolution of interface 
structure

PEAK LIST
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– Conclusions
– Void-free ZrC/Zircaloy-4 solid-state diffusion bond achieved
– Observations

• Higher relative [O] in Zircaloy-4
• Evidence of surface oxidation
• Evidence of Sn segregation at interface

Conclusions & Future Work

• Evidence of Sn segregation at interface
• Evidence of Hf diffusion into Zircaloy-4
• Macro-deformation of Zircaloy-4 during joining process 

– Future Work
• Optimise process temperature and pressure to minimise residual stresses and 

macro-deformation
• C detection & mapping (eg. Raman)
• Mechanical testing of diffusion couples
• Irradiation of samples
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