Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II

Proceedings

Spring 5-14-2012

Sintering and densification of UHTCs

Diletta Sciti Institute of Science and Technology for Ceramics

Laura Silvestroni Institute of Science and Technology for Ceramics

Stefano Guicciardi Institute of Science and Technology for Ceramics

Frederic Monteverde Institute of Science and Technology for Ceramics

Follow this and additional works at: http://dc.engconfintl.org/uhtc Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Diletta Sciti, Laura Silvestroni, Stefano Guicciardi, and Frederic Monteverde, "Sintering and densification of UHTCs" in "Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II", W. Fahrenholtz, Missouri Univ. of Science & Technology; W. Lee, Imperial College London; E.J. Wuchina, Naval Service Warfare Center; Y. Zhou, Aerospace Research Institute Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/uhtc/9

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Sintering and densification of UHTCs

Diletta Sciti, Laura Silvestroni, Stefano Guicciardi, Frèdèric Monteverde

Institute of Science and Technology for Ceramics, Via Granarolo 64, I-48018 Faenza, ITALY.

Aknowledgements

- AFOSR: Contract FA8655-12-3004
- ISTEC Staff: A. Bellosi, D. Dalle Fabbriche, C. Melandri,
 L. Pienti, G. Celotti
- M. Nygren, Arrhenius Lab, Univ. Stockholm.

Outline

- Introduction
- Densification of Borides
 - Effect of additive on HT Strength
- Present issues: Fiber-reinforced composites
 - Fiber evolution during densification
 - Mechanical properties
- Conclusions
- Densification of Carbides
- Advantages of SPS

Introduction

Borides and carbides are difficult to sinter...

Strategies:

- <u>Proper selection of sintering aids</u>
- Pressure-assisted densification techniques (HP, SPS, RHP..)
- Processing of starting powders (milling, SHS...)

Purpose:

- Full density (with low sintering temperatures and short processing time)
- Fine microstructure for RT properties
- Maintain properties at high temperature

Focus on sintering aid: affects the materials properties especially at high temperature

Additives and temperatures

	ZrB ₂	HfB ₂
ZrSi ₂ (<10%)	HP 1550°C	HP 1600°C
Si ₃ N ₄ (5%)	HP 1650-1700°C, SPS 1500°C, PLS 2150°C	HP 1800°C
MoSi ₂ (5-15%)	HP 1700-1750°C, SPS1600°C PLS 1850°C	HP 1900°C, SPS 1750°C, PLS 1950°C
TaSi ₂ (5-15%)	HP 1850°C	HP 1900°C, SPS 1750
Ni (2-3%)	HP 1850°C	HP 1750°C
AIN (5%)	HP 1850°C	-
Oxides $(AI_2O_3+Y_2O_3)$	HP 1900°C	-
C, B, B ₄ C ,WC, SiC	HP1900-2000°C PLS	HP 1900-2000°C

ZrB₂/HfB₂ + metals

In the past: Fe, Cr, Ti.. additions Densification by liquid phase.

More recently: Ni additions allow ZrB_2 full density at 1850°C. Drawback: large mean grain size (20 μ m), low melting phases in the system HfB₂ only reached 93% at 1750°C, grain coarsening

Secondary phases: Ni₂B G. b. phases: Zr-B-O, Zr-Ni-O, Zr-O

Additives: Nitrides

Borides with silicides

- Effective with many borides
- High melting point>2000°C (except ZrSi₂)
- Protective phases for oxidation
- PS possible with MoSi₂ (10%)

HP Temperature (°C)	ZrB ₂	HfB ₂	TaB ₂
ZrSi ₂	1550	1550 (SPS)	-
TaSi ₂	1870	1900	-
MoSi ₂	1750/PS:1850	1900/PS:1950	1680
WSi ₂	1930	-	-

ZrB₂ + (1-15)% MoSi₂

Full density at 1750°C, 10 min Mean grain size ~ 2.5 μm <u>Seco</u>ndary phases: MoB, Mo₅Si₃, (Mo,Zr)₅SiB₂

2 µm

ZrB₂-(3-15)% TaSi₂

ZrB₂

Full density at 1850°C, 10 min Mean grain size ~ 2 μm Secondary phases: ZrO₂, Zr-Ta-C, SiC, SiO₂

Partial decomposition of TaSi₂ and formation of solid solution (Zr,Ta)B₂

HfB₂ + (3-15)% TaSi₂

Full density at 1900°C, 10 min Mean grain size ~ 1 μ m Secondary phases: HfO₂, TaSiB

$TaB_2 + 10\% MoSi_2$

Full density at 1680°C Mean grain size ~ 3.5 μm

Densification mechanisms

- Low dihedral angles in final ceramics indicate that MoSi₂/TaSi₂ have a high affinity for diboride ceramics
- During heating, transient liquid phases form due to reaction between silicide and surface oxide impurities on the diboride particles.

 $Mo/TaSi_2 + B_2O_3 \rightarrow Mo/Ta-Si-B-O$ liquid

- Densification assisted by **liquid phase**:
 - Borides: wetting Ta/Mo-Si-B-O liquid;
 - ZrB_2 , HfB_2 are partially soluble in Ta/Mo-Si-B liquid phases.
- Solution reprecipitation: formation of core-shell diboride grains. (M,Mo/Ta)B₂ shells grow epitaxially on pure MB₂ cores during densification as the transient liquid phase solidifies.
- During cooling the liquid phase solidifies, resulting in formation of and Mo/TaB, Mo/Ta₅SiB₂ crystalline phases.
- Few residual integranular films, can be removed calibrating the sintering cycle

Additives: oxides

ZrB_2 -SiC + 5vol%(Y_2O_3 +Al₂O₃)

- During heating, liquid phase form due to eutectic between $Al_2O_3-Y_2O_3$ (1780°C) and silica
- Promotes sintering for ZrB₂ and SiC
- Classical solution-reprecipitation of SiC SiC grain growth

Solid state sintering

- Additions of C, WC to pure ZrB₂, HP 1900°C (UMR)
- Additions of WC to ZrB₂-SiC, HP 2000°C (SIC-CAS)
- Carbides: cleaning of the boride surface from residual oxides

 $ZrO_{2}+B_{2}O_{3}+C \rightarrow ZrB_{2}+CO(g)$ $ZrO_{2}+C \rightarrow ZrC+CO(g)$ $3 WC + ZrO_{2} \rightarrow ZrC+3W + 2CO(g)$

• Clean grain boundaries by TEM

M. J. Thompson et al., Elevated temperature thermal properties of ZrB_2 with carbon additions, JACS, 95, 1107 (2012), J. Zou, Strong ZrB_2 -SiC-WC Ceramic at 1600°C, JACS, 95, 874 (2012)

Mechanical properties

C istec

Nitrides, Metals: strength degradation at high temperature Silicides: MoSi₂ ok > TaSi₂ > ZrSi₂ Carbides: WC ok

Mechanical properties

C istec

Nitrides: strength degradation at high temperature Silicides: MoSi₂ ok

Mechanical properties

Load-displacement curves

Summary of densification mechanisms

- Liquid phase sintering (metals, nitrides, oxides)

 -advantages: fast material transfer (low sintering temperature)
 -drawback: residual amorphous phases
- Transient liquid phases sintering (silicides) + solid solution formation

-advantages: few or no residual amorphous phases;

Solid state sintering (activated by carbide phases)

 -advantages: no residual amorphous phases
 -higher sintering temperatures: 1900°C

Densification issues for reinforced materials

Short Fiber-reinforced composites -5.5 MPa m0.5

 ZrB_2 -SiC fibers could sinter at 1850°C-1900°C, with no sintering aids, by HP. Hi-Nicalon fibers do not withstand these temperatures. Sintering temperature < 1750°C \longrightarrow Sintering additive needed

S. Guicciardi, et al., Journal of the American Ceramic Society, 93, 2384(2010)

ZrB₂ -SiC fiber

Sintering aids (<1750 ℃)

ZrB₂ - SiC fiber : Fiber evolution around 1700 °C

ZrB₂ - SiC fiber

5 mN nanoindentations

Sample	Matrix Rim		Core	
Sintering additive	ve H (GPa) H (GPa)		H (GPa)	
Si ₃ N ₄	33.1 ± 3.6	35.6 ± 4.7	32.0 ± 2.7	
ZrSi ₂	38.7 ± 3.5	<u>42.5 ± 3.1</u>	30.6 ± 2.1	
MoSi ₂	32.8 ± 5.0	38.6 ± 7.1	33.3 ± 2.2	
	E (GPa)	E (GPa)	E (GPa)	
Si ₃ N ₄	511 ± 38	417 ± 32	313 ± 18	
ZrSi ₂	579 ± 52	<u>488 ± 30</u>	329 ± 26	
MoSi ₂	526 ± 52	407± 31	332 ±14	

- Fiber Starting properties:
 E = ~300 GPa, HV= 30 GPa
- H, E (rim) > H, E (core) (elimination of intergranular glassy phase)
- RIM (ZrSi₂)>RIM (MoSi₂, Si₃N₄)
- Significant differences in the matrix

K _{Ic}	Si ₃ N ₄	ZrSi ₂	MoSi ₂
MPa∙m ^{0.5}	5.7	6.2	4.7

HfB₂- SiC fibers

Issue: effect of sintering aid on strength and toughness

Conclusions

- Many ways to densify UHTCS
- Sintering in presence of a liquid phase is more convenient
- Sintering aid: affects HT properties
- Silicides are a good option:
 - Pressureless Sintering
 - No strength degradation up to 1500°C in air
- Addition of carbides (WC) very promising
- For fibers-reinforced composites, sintering aid is needed
- Sintering agents affect fiber chemistry and its local properties
- Efficient processing route to avoid introduction of amorphous phases still has to be found

- Less data available for carbides
- Sintering aids: B, C, B₄C (Solid state sintering)
- Silicides work well with carbides
- Similar densification mechanisms:
 - -Transient liquid phase for MoSi₂
 - -Transient liquid phase + SS for $TaSi_2/ZrSi_2$

PS with MoSi₂

HP Temperature (°C)	ZrC	HfC	ТаС		
5-15 ZrSi ₂	-	1750*	1700		
5-15 TaSi ₂	1700	1760	1750		
5-15 MoSi ₂	1900	1900	1850		

*final density: 90%

Sintering T: 1700-1900°C Mean grain size ~ 1 μm Secondary phases: HfO₂, TaSiB,

Composizione (Vol%)	Si ('	nterizzazione C/min/MPa)	Densità rel. (%)	Mgs (μm)	H _v 1.0 (GPa)	E (GPa)	K _{ic} (MPa m ^{1/2})	σ _{rt} (MPa)	σ _{1200°C} # (MPa)	σ _{1500°c} # (MPa)	Rif.
100HfC	PLS	1900/60	~70	1.5	-	-	-	-	-	-	6
100HfC	SPS	2200/3/65	98.0	20	25	464	-	470	-	-	27
HfC+(1,3,9)MoSi ₂	SPS	1750-1900/3- 5/100	98.0-99.7	2.2-0.8	27	484-498	-	868-510	-	-	27
HfC+(5,10,20)MoSi ₂	PLS	1900/60	96.5-98.1	4	15	434-385	3.5	465-383	350-410	240-300	6
90HfC+10MoSi ₂ *	PLS	1900/60	99.1	2	16	-	-	540	-	-	6
85HfC+15MoSi ₂	HP	1900/10/30	99.9	~1.2	20	450	3.8	420	300	-	10
85HfC+15TaSi ₂	HP	1760/10/30	98.6	~0.8	18	490	3.6	470	400	-	10
100TaC	PLS	1900/60	~91	6	-	-	-	-	-	-	6
TaC+(5,10,20)MoSi ₂	PLS	1900/60	92.9-98.4	5-7	12	480	3.8	590	-	-	6
95TaC+5MoSi ₂ **	HP	1900/5/30	94	2.8	14	-	3.5	585	-	300	11
85TaC+15MoSi ₂	HP	1850/3/30	93.3	~1.2	14	490	4.7	900	580	-	10
85TaC+15TaSi ₂	HP	1750/9/30	97.3	~2.5	14	490	4.7	680	430	-	10
80TaC+20SiC	SPS	1800/5/404	99.3±1.6	-	20	510	6.4	680	640	680	24
90TaC+10TaB ₂ wt	HP	2100/-/30	98.6	-	20	545	3.4	600	-	-	26
TaC+(1,2)B ₄ C wt	HP	2100-2300/45/-	98-99	-	15-16	468-470	3.2	-	-	-	18
99TaC+1B₄C wt	SPS	1850/10/100- 255-363	97-fully	0.7-1.2	22-25	364-510	-	-	-	-	23
96TaC+4CNTs wt short	SPS	1850/10/100- 255-363	94-fully	1.6-1.9	11-18	258-331	-	-	-	-	22
96TaC+4CNTs wt long	SPS	1850/10/100- 255-363	94-fully	0.6-1.2	13-23	288-395	-	-	-	-	22

Advantages of Spark plasma sintering

High heating rates, short processing times, minimization of grain growth \rightarrow improvements of the materials' properties

- Monolithic HfC, ZrC, ZrB₂ densified to 98-99% at 2100-2200°C (HfB₂ only 80%)
- Sintering rates: 10⁻³ s⁻¹

A.BELLOSI, et al, International Journal of Applied Ceramic Technology, (2006

Borides with 0-9% MoSi₂

- 1 vol % $MoSi_2$ is already efficient in:
- -Improving the sintering
- -Decreasing sintering Temperature
- -Refining micorstructure
- For SPS: 3 vol% silicides is OK

D. Sciti, et al, Journal of the American Ceramic Society, 91(2008) 143-

UHTCs: Materials for Extreme Environment Applications II May 13-18, 2012, Hernstein, Austria

time (s)

0.5 0.6 0.7 0.8 0.9 1.0

Relative density

Carbides with 0-9% MoSi₂

SPS for fiber reinforced

• SPS is a preferential technique (lower temperature, shorter times)

ZrB ₂ -20f	Sintering cond.	K_{Ic} MPa m0.5	σ MPa	σ (1200°C)
HP	1700°C/50MPa	5.7	413	335
SPS	1500°C/50MPa	5.5	370	450
HfB ₂ -20f	Sintering cond.	K_{lc} MPa m0.5	σ MPa	σ (1200°C)
HP	1700°C/50MPa	4.2	330	290
SPS	1500°C/50MPa	4.7	680	400

Mechanical properties vs additive

Sample	Composition	Sintering Temperature	Relative density	К _{іс}	$\sigma_{\rm RT}$
	Vol%	°C	%	MPa∙m ^{0.5}	MPa
ZS	ZrB ₂ +Si ₃ N ₄	1700	100	3.75±0.10	600±90
ZS20f	ZS+20 SiCf	1700	97.7	5.65±0.30	413±17
ZZ	ZrB ₂ +ZrSi ₂	1600	98.5	4.25±0.04	808±31
ZZ20f	ZZ+20SiCf	1650	100	6.24±0.35	385±13
ZM	ZrB ₂ +MoSi ₂	1750	97.6	3.50±0.60	780±87
ZM20f	ZM+20SiCf	1750	100	4.73±0.13	378±15

ZrB₂- SiC platelets: matrix/platelets interface

	Add.	K _{lc} (MPa m ^{1/2})	σ (MPa)	$\sigma_{_{1200^\circ C}}$ (MPa)
$ZrB_2^- \beta SiC$	MoSi ₂	5.0±0.1	410±40	380±30
ZrB_2 - βSiC	Si ₃ N ₄	3.8±0.1	300±40	-

Solid solution formation and stability of silicides

Is SS formation necessary for densification? NO

Does densification take advantage of SS formation? In some cases lower sintering temperatures

Hot pressed carbides + TaSi₂

$TaC + 15 TaSi_2$

Full density at 1750 ℃, 30 min Mean grain size ~ 2.5 µm Secondary phases: TaSi₂, SiC, Si-O-C

Densification mechanisms: UHTCs + $TaSi_2$

among the matrix grains

Boride matrix: wetted grain boundaries Carbide matrix: clean grain boundaries

C istec

Selected additives for SiC fiber reinforced

- Affects the sintering temperature of the matrix
- Reacts with the fibers

- Si3N4 allows densification at 1700°C
- ZrSi2 allows densification at 1550°C
- MoSi2 allows densification at 1750°C

- Less data available for carbides
- Silicides work well with carbides
- Similar densification mechanisms:
 - -Transient liquid phase for MoSi2
 - -Transient liquid phase + SS for TaSi2/ZrSi2

HfC + 15 TaSi₂

