Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II

Proceedings

Spring 5-14-2012

Ultra-High Temperature Ceramics: Historic Perspectives and Recent Progress

W.G. Fahrenholtz Missouri University of Science and Technology

G.E. Hilmas Missouri University of Science and Technology

Follow this and additional works at: http://dc.engconfintl.org/uhtc Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

W.G. Fahrenholtz and G.E. Hilmas, "Ultra-High Temperature Ceramics: Historic Perspectives and Recent Progress" in "Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II", W. Fahrenholtz, Missouri Univ. of Science & Technology; W. Lee, Imperial College London; E.J. Wuchina, Naval Service Warfare Center; Y. Zhou, Aerospace Research Institute Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/uhtc/2

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Ultra-High Temperature Ceramics Historic Perspective and Recent Progress

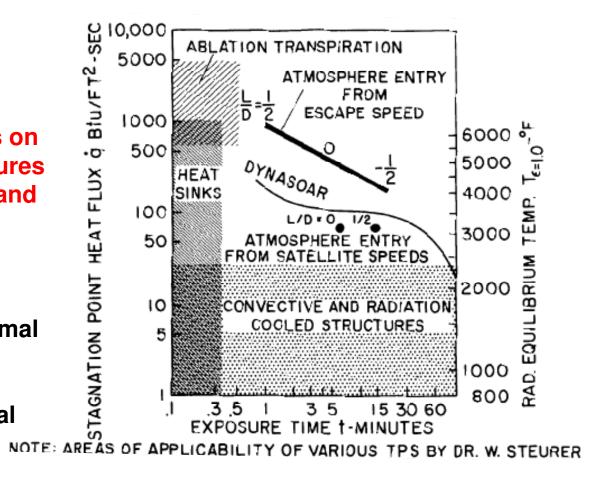
W.G. Fahrenholtz and G.E. Hilmas Missouri University of Science and Technology Rolla, MO 65409 USA

Historic Context

- Boride and carbide synthesis noted as far back as mid 1800s
- Moisson studied transition metal carbides in the late 1800s
 - Developed specialized electric arc furnace
 - Pioneer in SiC research (artificial diamond)
- Reactive processing of ZrB₂
 - Tucker and Moody, Proc. Chem. Soc. 17, 129 (1901).

"Although many of the refractory materials displayed capabilities for leading-edge and nose applications, some development efforts would be required to produce satisfactory components from these materials"

E.B. Mathauser, "Materials for Application to Manned Reentry Vehicles," pp. 559-570 in U.S. Air Force and NASA Joint Conference on Lifting Hypervelocity and Reentry Vehicles, April 11-14, 1960.

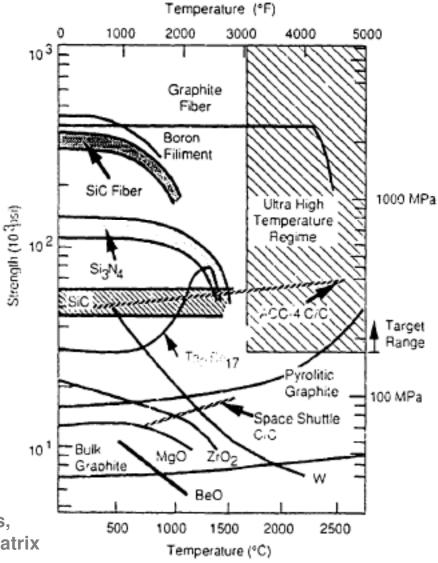


UHTC is a Recent Term

- Terms from literature of the 1960s and 70s
 - Refractory transition metal borides
 - Oxidation resistant diboride materials
 - Hard metals
 - Ceramals

Recommendation 12: "Studies on materials at extreme temperatures and establishment of thermal and other pertinent material properties"

"Thermal Protection Systems: Report on the Aspects of Thermal Protection of Interest to NASA and the Related R&D Requirements" NASA Technical Memorandum X-650, 1962.



UHTC is a Recent Term

- Term first used in the open literature in the late 1980s and early 90s
 - 1989: AFRL report "Ultra-High Temperature Ceramic Composites by K. Vedula from CWRU
 - 1991: AFRL report "Ultra-High Temperature Applications" by Mehrotra from Wright State Univ.
 - 1993: "Ultra-High Temperature Assessment Study" by Katz, Kerans, et al.
 - 1994: NASA report "Ultra-High Temperature Ceramics" by D.J. Rasky and J.D. Bull

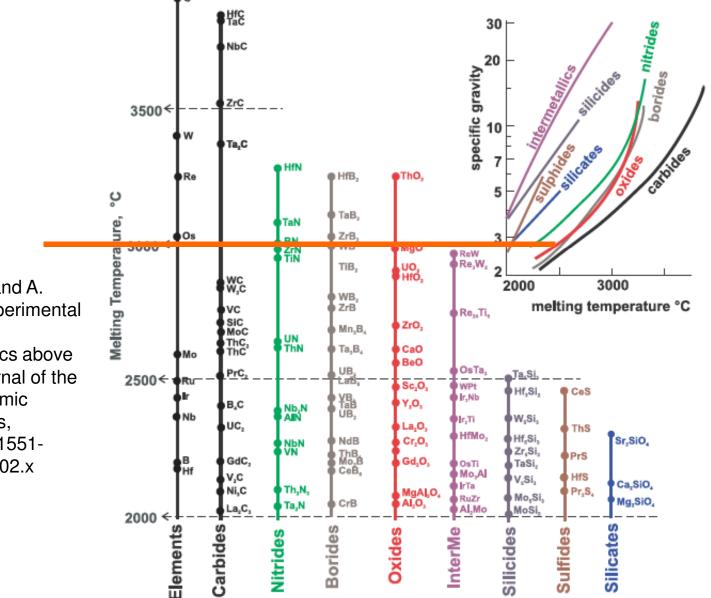
– NSWC CrB₂-NbB₂ from NSWC 1997

E.L. Courtright, H.C. Graham, A.P. Katz, and R.J. Kerans, "Ultra-High Temperature Assessment Study-Ceramic Matrix Composites," WL-TR-91-4061, September 1992.

Historic Studies

- Projects sponsored by Air Force Materials Lab
 - Avco and Arthur Little examined thermodynamics and kinetics
 - ManLabs et al. studied thermomechanical properties Kaufman, Clougherty, Rhodes, Kalish, Tye, et al.
 - Aerojet focused on phase equilibria Rudy with Nowotny as a consultant
- NASA
 - Nozzle materials in the 1950s
 - TPS materials
- Russia
 - All aspects of borides and carbides
 - >2000 of publications by Samsonov

Image from G.S. Upadhaya, "Professor Grigorii Valentinovich Samsonov: The Complete Materials Scientist," Science of Sintering, 40, 99-103 (2008).


How Do We Define UHTCs?

- Melting temperature
 - Melting temperature above some threshold
 - 3000° C is commonly cited
- Use temperature
 - Can be used for extended times above some temperature
 - Extended use vs. short duration
 - SiC can be used up to 1650° C for short times
- Chemistry
 - Strong covalent bonds, but mixed bond character
 - Brittle at room temperature

Melting Temperature

S.V. Ushakov and A. Navrotsky, "Experimental Approaches to Thermodynamics above 1500° C," Journal of the American Ceramic Society in press, DOI: 10.1111/j.1551-2916.2012.05102.x

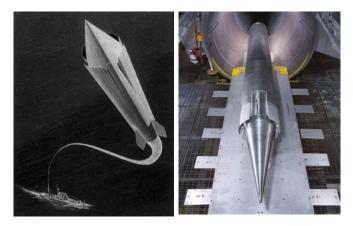
Use Temperature

<u>Today</u>

Future

Subsonic / Supersonic Flight Vehicles Hypersonic Flight (Mach 4-5+)

- Access to Space
- Global Reach



Requires new materials with >2000° C capability

Based on slides by M. Opeka, U.S. Naval Surface Warfare Center

Chemistry

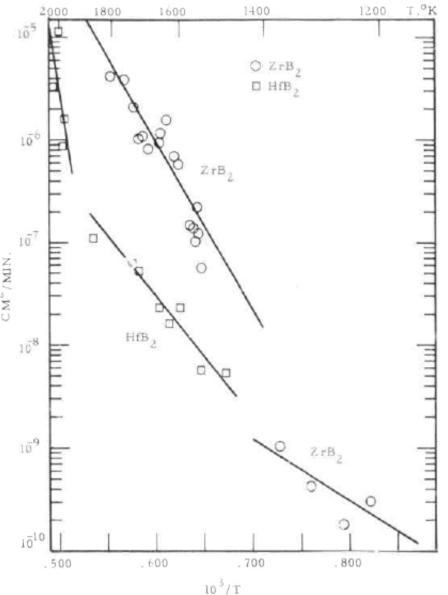
Periodic Table of the Elements

1A 1 H 1.008 3 Li 6.941 11 Na	2A 4 9.012 12 Mg 24.31											3A 5 10.81 13 Al	4A 6 C 12.01 14 Si	5A 7 14.01 15 P	6A 8 0 16.00 16 S	7A 9 F 19.00 17 Cl	8A 2 He 4.003 10 Ne 20.18 18 Ar
22.99 19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	26.98 31 Ga 69.72	28.09 32 Ge 72.59	30.97 33 As 74.92	32.07 34 Se 78.96	35.45 35 Br 79.90	39.95 36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226	89 Ac** (227)	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									

* Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
** Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

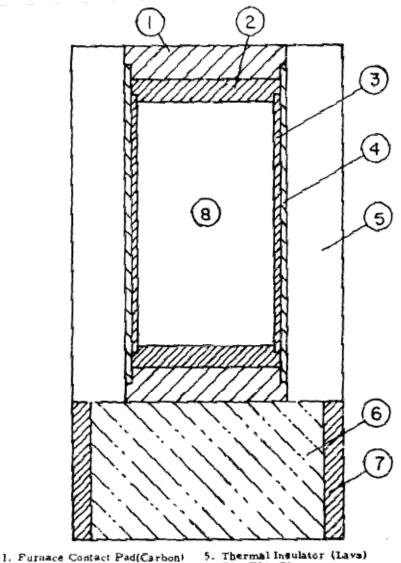
- Why diborides and carbides?
- How were Zr and Hf compounds identified?
- What was studied?
 - Thermochemical properties
 - Mechanical properties
 - Thermal properties
 - Oxidation and environmental studies
 - Phase equilibria
- Summary

- Oxides found to be unsuitable for these temperatures
 - Melting temperatures are lower than borides and carbides
 - Creep is an issue
 - Resistance to thermal shock is poor
 - Thermal conductivity is too low
- Borides and carbides
 - Thermodynamically stable
 - Strong covalent bonding leads to higher strength
 - Strength is maintained at elevated temperatures
 - Bonding has metallic character
 - Thermal shock and creep resistance is higher



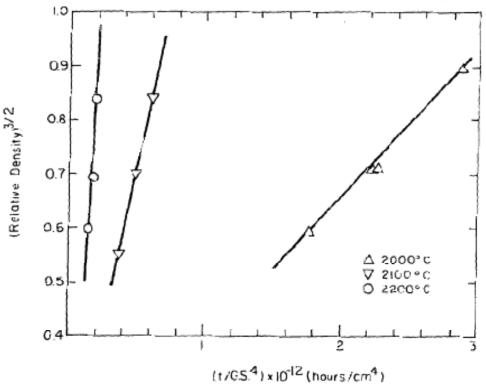
Why Diborides?

- Thermodynamically stable
 - AFRL research focused on commercial materials that were further processed
 - Melted or zone refined using induction heating apparatus
- Oxidation behavior
 - Carbides showed linear kinetics over wide temperature range
 - Borides had parabolic kinetics at some temperatures and were deemed more promising


L.A. McClaine, "Thermodynamic and Kinetic Studies for a Refractory Materials Program" ASD-TDR-62-204

Densification Behavior

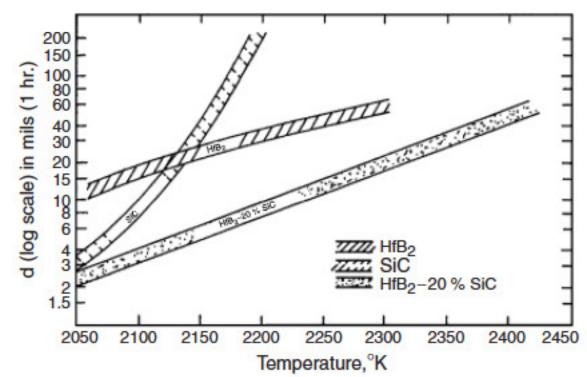
- Army funded densification studies of B₄C, SiC, TiC, and TiN
 - Pressures up to 120 ksi or 850 MPa
 - Reactive hot pressing
 - Specimens were 1 inch in diameter
- Reported microstructures, strength and hardness



D. Kalish, E.V. Clougherty, and J. Ryan, "Fabrication of Dense Fine Grained Ceramic Materials" AMRA CR 6 7-04(F)

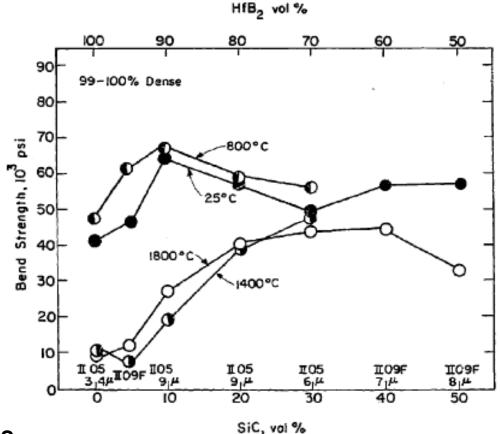
- 2. Elec. Insulating Pad (BN) 3. Elec. Insulating Liner (BN)
- 4. Graphite Furnace
- 6. OL. FM. Closure
- 7. Closure Electrical Insulator (Lava)
- Compact Chamber (1.0 inch diam, x 2.5 inches long)

- Initial study focused on comparing borides and other materials
- Part II compared different borides
- Ranked oxidation behavior
 - HfB₂ and ZrB₂ best
 - Ta, Ti, and Nb compounds were inferior
- Examined impact of metal to boron ratio on densification, oxidation, and physical properties
- Temperatures up to 2300° C were needed for densification


L. Kaufman and E.V. Clougherty, "Investigation of Boride Compounds for Very High Temperature Applications" AFML-TR-68-190

Oxidation Behavior

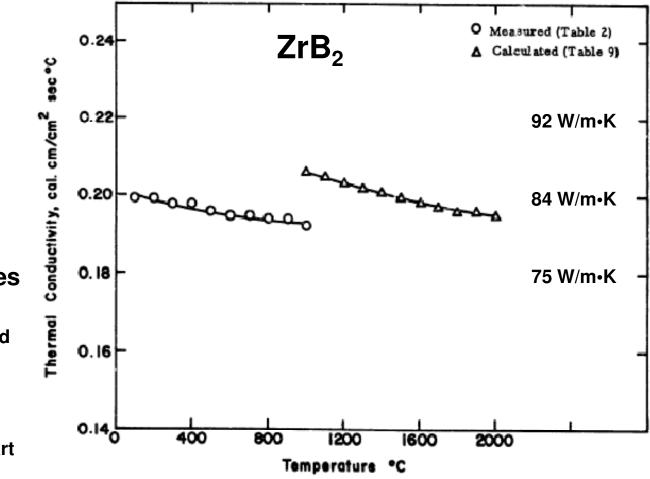
- Zr and Hf diborides were identified as the most promising
 - Lowest oxidation rates
- SiC additions improved oxidation rate at intermediate temperatures
 - Protective SiO₂
 scale
- HfB₂ was better than ZrB₂


E.V. Clougherty, R.L. Pober, and L. Kaufman, "Synthesis of Oxidation Resistant Metal Diboride Composites," Transactions of the Metallurgical Society of AIME, 242(6) 1077-1082 (1968).

Mechanical Properties

- Strength tested up to 1800° C
- Range of relative density values
- ZrB₂ and HfB₂
 - Nominally pure
 - SiC additions
 - Carbon additions
- Porosity reduces strength despite a decrease in grain size
- SiC reduces grain growth
- Carbon improves resistance to crack propagation and reduces elastic modulus

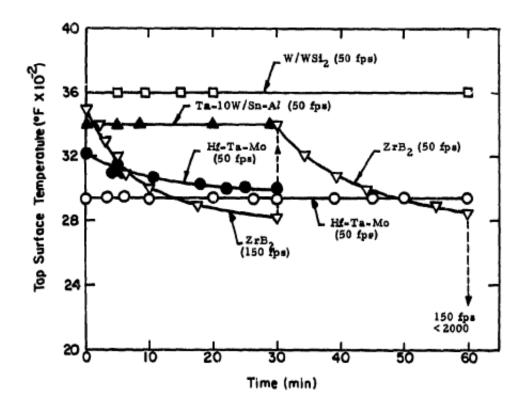
50 ksi ≈ 350 MPa


W.H. Rhodes, E.V. Clougherty, and D. Kalish "Research and Development of Oxidation-Resistant Diborides: Mechanical Properties" AFML-TR-68-190 Part II, Vol IV.

Thermal Properties

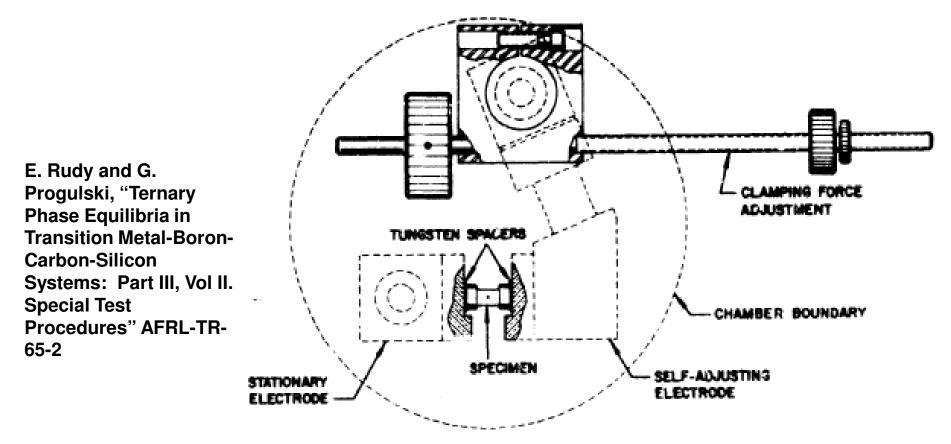
- Thermal conductivity measured 100° C to 1000° C by cut bar method
- Thermal diffusivity measured 1000° C to 2000° C by laser flash
- Also measured:
 - CTE
 - Total emittance
 - $\mathbf{C}_{\mathbf{P}}$
 - ΔS and ΔH
- Built unique equipment for their studies

E.V. Clougherty, K.E. Wilkes, and R.P. Tye, "Research and Development of Oxidation-Resistant Diborides: Thermal, Physical, Electrical, and Optical Properties" AFML-TR-68-190 Part II, Vol V.



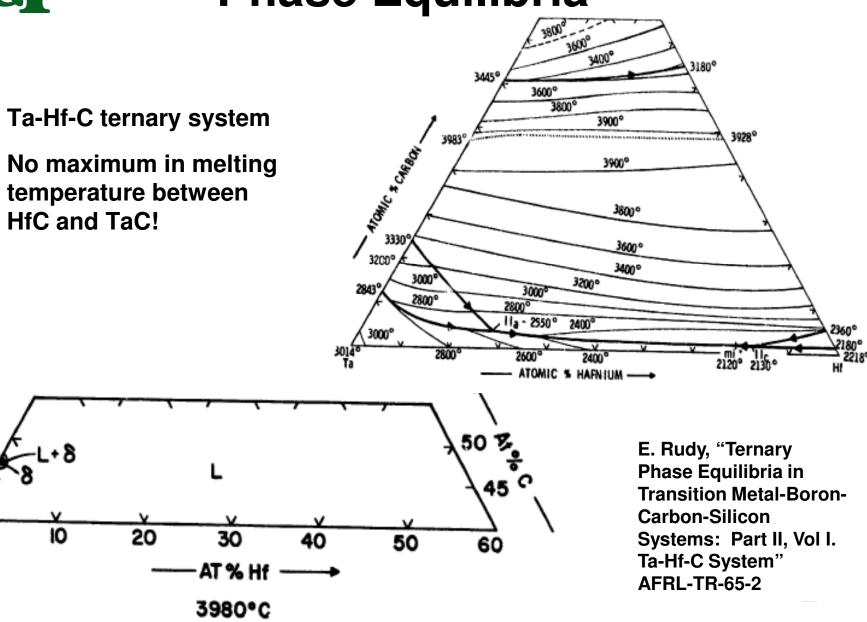
High Velocity Testing

- Inductively heated furnaces (cold gas, hot wall)
 - Low velocity: 1 cm/sec, pO₂ range 0.013 atm to 0.2 atm, 1 atm total pressure.
 - High velocity: 100 m/sec, air
- Goal was to "bridge the gap" between furnace and arc heater testing
- Temperature gradients impacted results
 - Induction heating
 - Inverse T gradient due to insulating oxide scale


L. Kaufman and H. Nesor "Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions" AFML-TR-69-84 Part II, Vol II.

Phase Equilibria

- Rudy designed equipment for ultra-high temperature studies
 - Pirani furnace for melting of refractory materials
 - Melting points, solidus studies



TaC

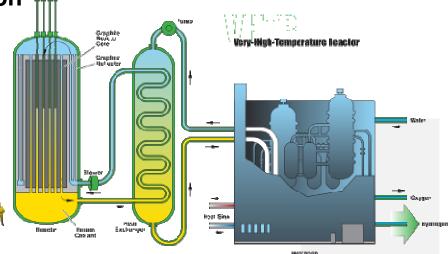
0

Phase Equilibria

- Ta-Hf-C ternary system
- No maximum in melting temperature between **HfC and TaC!**

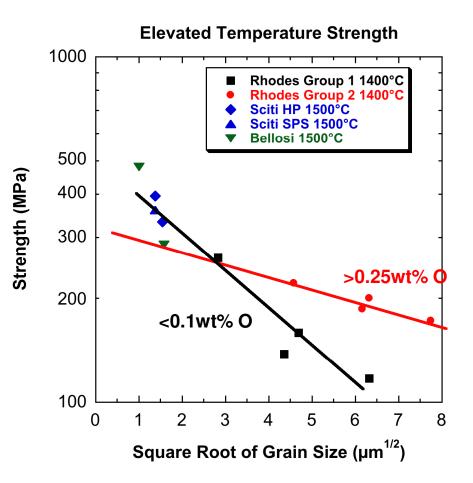
Sissouri Summary of Historic Studies

- Detailed fundamental studies were conducted in the 1960s and 70s
 - AFRL-sponsored research in the U.S.
 - Samsonov and others in in the U.S.S.R.
- Unique equipment was designed and built
- Significant advances in fundamental science
 - Processing and densification
 - Oxidation
 - Mechanical behavior
 - Thermal properties
 - Phase equilibria and thermochemical properties



- Advanced aerospace vehicle concepts
 - Hypersonic aviation
 - Reusable atmospheric re-entry vehicles
 - Air-breathing hypersonic missile systems
- Nuclear renaissance
 - Advanced reactor designs
 - Fuel cycles to minimize proliferation
- Other niche applications
 - High temperature electrodes
 - Microelectronics
 - Molten metal handling

X-43B Hypersonic Concept Image Courtesy of NASA

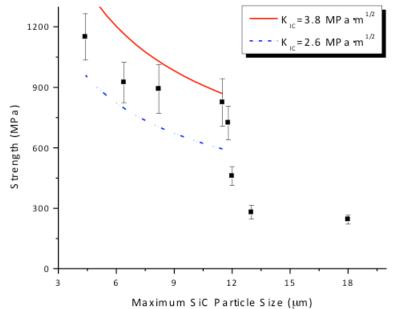


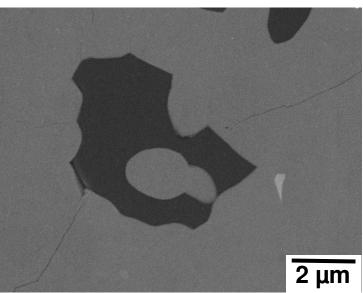
Production Plan

Strength

- Strengths have improved due to the ability to produce fine grained, dense ceramics
 - Historically 300-500 MPa
- Monteverde, Sciti, et al. have used silicides as sintering aids
 - Hot pressing ~800 MPa
 - Sintering >500 MPa
- Chamberlain used attrition milling to reduce particle size
 - >1000 MPa at room temperature

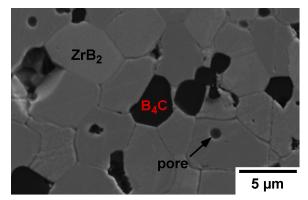
W.H. Rhodes, E.V. Clougherty, and D. Kalish "Research and Development of Oxidation-Resistant Diborides: Mechanical Properties" AFML-TR-68-190 Part II, Vol IV.

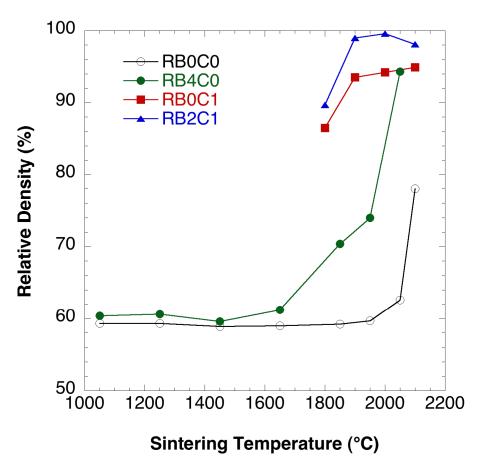

A. Balbo and D. Sciti, Mater. Sci. and Eng. A, 475 108-112 (2008)


A. Bellosi, F. Monteverde, and D. Sciti, Int. J. Applied Ceram. Technol., 3(1) 32-40 (2006).

Mechanical Behavior

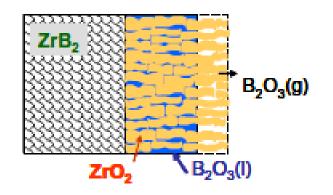
- Nominally pure ZrB₂
 - Strength proportional to inverse square root of grain size for dense ceramics
- ZrB₂-SiC ceramics
 - Thermal expansion mismatch results in residual stresses
 - ZrB₂ in tension
 - SiC particle size controls strength
 - Microcracking threshold for SiC particle sizes around 12 μm

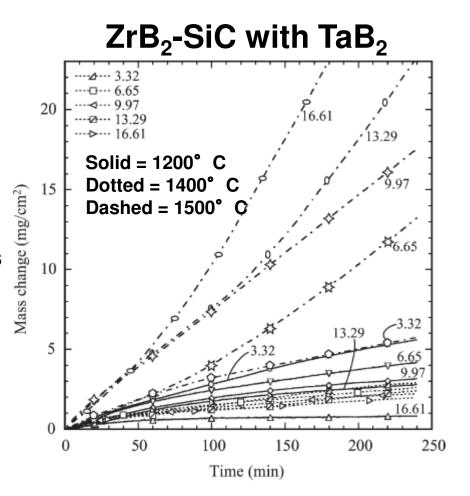



J. Watts et al., J. Am. Ceram. Soc., 94(12) 4410-4418 (2011).

Densification

- Nominally pure ZrB₂
 - Historically, relative density >98% not possible with grain size <50 μm
 - O impurities are critical
 - Pressureless sintering
- ZrB₂-SiC compositions
 - Historically, 2100°C or higher
 - PS or HP at 1900° C
 - SPS at 1750°C or higher
 - Additives and particle size


W.G. Fahrenholtz et al., J. Am. Ceram. Soc., 91(5) 1398-1404 (2008).

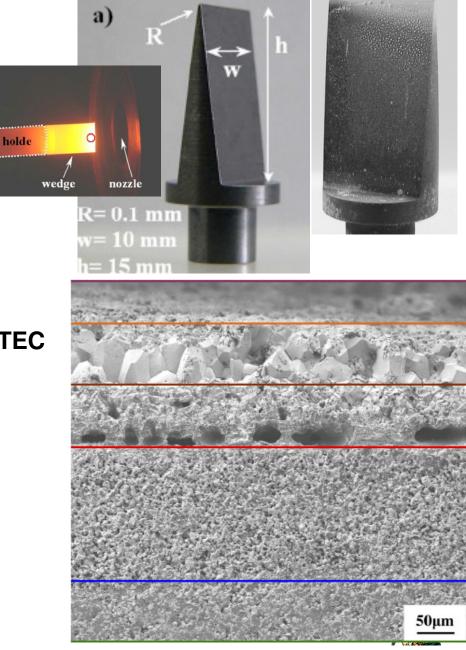


Oxidation

- Historic studies
 - Compared oxygen uptake, mass gain, and scale thickness
- Modern studies
 - Mainly TGA studies and furnace oxidation at ≤1600° C
 - Modeling to understand mechanisms
 - Best performance with silica scale formers plus modifying additives

Intermediate Temp (~1000 to ~1800 °C)

Peng et al., J. Mater. Res. 24(5) 1855-1867 (2009) Parthasarathay et al., Acta Mater, 55, 5999-6010 (2007)



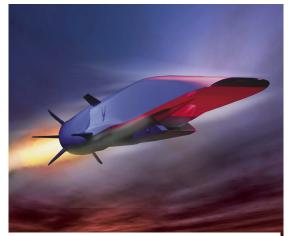
Testing

b)

- Historic studies
 - Compared oxygen uptake, mass gain, and scale thickness
- Modern studies
 - Arc heater testing
 - Plasma wind tunnel reports by ISTEC
 - Torch tests and extreme temperatures from Harbin group
 - Laser melting by Imperial

Monteverde and Savino, J. Am. Ceram. Soc., in press J. Han, Compos. Sci. Technol., 68, 799-806 (2008)

- Interest in UHTCs grew in the 1990s
 - Hypersonics, re-entry, and propulsion
- Mechanical behavior has been studied
 - Improved strength due to finer grain sizes
 - Strength-limiting features were identified
- Densification behavior was improved
 - Control of surface oxide impurities and starting powder size
- Oxidation and testing have continued
 - Modeling and additive studies
 - Relevant environment testing

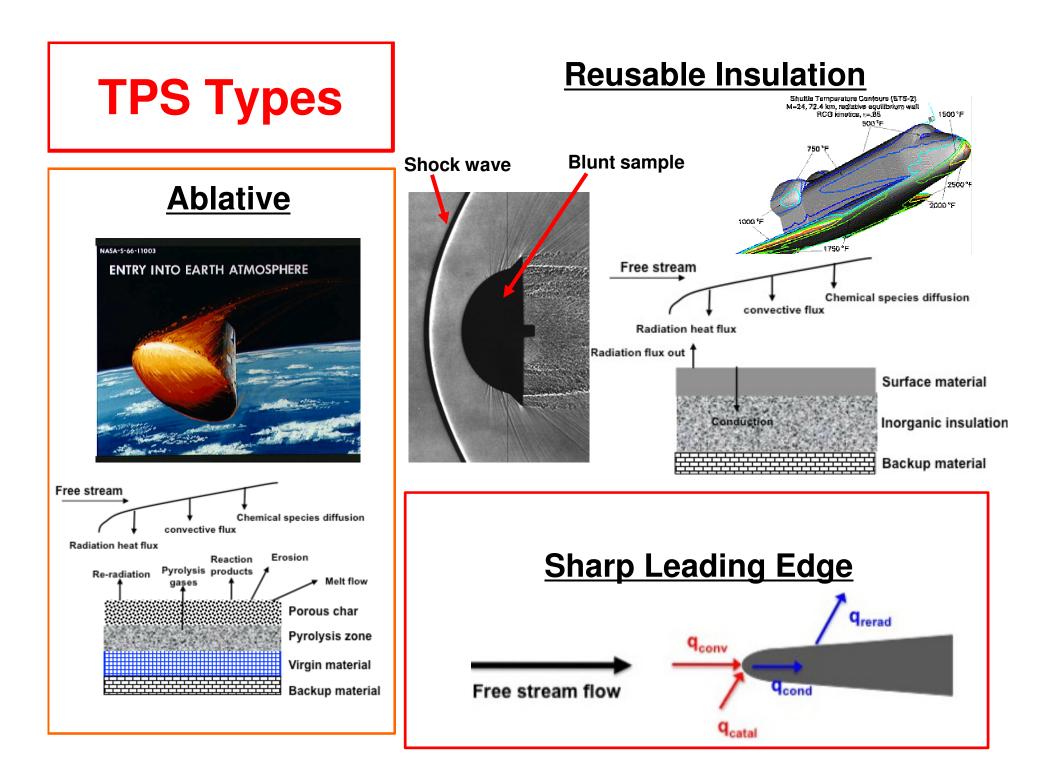


- Fabrication technologies Can parts be made to near net shape at reasonable cost?
- Properties

Is behavior representative of inherent properties?

Performance

Improvements needed in resistance to oxidation, thermal shock, thermal cycling, and creep


X-51 Concept Image Courtesy of NASA

Can we move from concept to an operational hypersonic flight vehicle?

X-51 Test Vehicle Image Courtesy of NASA

Thank you!

