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Historic Context

• Boride and carbide synthesis noted as far back as mid 1800s

• Moisson studied transition metal carbides in the late 1800s

– Developed specialized electric arc furnace

– Pioneer in SiC research (artificial diamond) 

• Reactive processing of ZrB2• Reactive processing of ZrB2

– Tucker and Moody, Proc. Chem. Soc. 17, 129 (1901).

“Although many of the refractory materials displayed 
capabilities for leading-edge and nose applications, 
some development efforts would be required to 
produce satisfactory components from these materials”

E.B. Mathauser, “Materials for Application to Manned Reentry 
Vehicles,” pp. 559-570 in U.S. Air Force and NASA Joint Conference 
on Lifting Hypervelocity and Reentry Vehicles, April 11-14, 1960.



UHTC is a Recent Term 

• Terms from literature of the 1960s and 70s

– Refractory transition metal borides

– Oxidation resistant diboride materials

– Hard metals

– Ceramals

“Thermal Protection Systems:  
Report on the Aspects of Thermal 
Protection of Interest to NASA 
and the Related R&D 
Requirements” NASA Technical 
Memorandum X-650, 1962.

Recommendation 12: “Studies on 
materials at extreme temperatures 
and establishment of thermal and 
other pertinent material 
properties”



UHTC is a Recent Term
• Term first used in the open literature in 

the late 1980s and early 90s

– 1989:  AFRL report “Ultra-High 
Temperature Ceramic Composites 
by K. Vedula from CWRU

– 1991: AFRL report  “Ultra-High 
Temperature Applications” by 
Mehrotra from Wright State Univ.Mehrotra from Wright State Univ.

– 1993:  “Ultra-High Temperature 
Assessment Study” by Katz, 
Kerans, et al.

– 1994: NASA report “Ultra-High 
Temperature Ceramics” by D.J. 
Rasky and J.D. Bull

– NSWC CrB2-NbB2 from NSWC 1997 

E.L. Courtright, H.C. Graham, A.P. Katz, and R.J. Kerans, 
“Ultra-High Temperature Assessment Study-Ceramic Matrix 
Composites,” WL-TR-91-4061, September 1992.



Historic Studies
• Projects sponsored by Air Force Materials Lab

– Avco and Arthur Little examined thermodynamics and kinetics

– ManLabs et al. studied thermomechanical properties
Kaufman, Clougherty, Rhodes, Kalish, Tye, et al.

– Aerojet focused on phase equilibria
Rudy with Nowotny as a consultant

• NASA

– Nozzle materials in the 1950s

– TPS materials

• Russia

– All aspects of borides and carbides

– >2000 of publications by Samsonov

Image from G.S. Upadhaya, “Professor Grigorii Valentinovich
Samsonov:  The Complete Materials Scientist,” Science of 
Sintering, 40, 99-103 (2008).



How Do We Define UHTCs?

• Melting temperature

– Melting temperature above some threshold

– 3000°°°°C is commonly cited

• Use temperature

– Can be used for extended times above some temperature– Can be used for extended times above some temperature

– Extended use vs. short duration

– SiC can be used up to 1650°°°°C for short times

• Chemistry

– Strong covalent bonds, but mixed bond character

– Brittle at room temperature



Melting Temperature

S.V. Ushakov and A. 
Navrotsky, “Experimental 
Approaches to 
Thermodynamics above 

1500°C,” Journal of the 
American Ceramic 
Society in press, 
DOI: 10.1111/j.1551-
2916.2012.05102.x



Use Temperature

Subsonic /

Supersonic
Flight
Vehicles

Today

Hypersonic

Flight (Mach 4-5+)

- Access to Space

- Global Reach

Future

Vehicles

Solid

Propulsion
Missiles

Requires new materials

with >2000°°°°C capability

- Global Reach

Hypersonic 

Airbreathers

Based on slides by M. Opeka, U.S. Naval Surface Warfare Center



Chemistry



Research from the 1960s

• Why diborides and carbides?

• How were Zr and Hf compounds identified?

• What was studied?

– Thermochemical properties

– Mechanical properties– Mechanical properties

– Thermal properties

– Oxidation and environmental studies

– Phase equilibria

• Summary



Why Diborides and Carbides?

• Oxides found to be unsuitable for these temperatures

– Melting temperatures are lower than borides and carbides

– Creep is an issue

– Resistance to thermal shock is poor

– Thermal conductivity is too low– Thermal conductivity is too low

• Borides and carbides

– Thermodynamically stable

– Strong covalent bonding leads to higher strength

– Strength is maintained at elevated temperatures

– Bonding has metallic character

– Thermal shock and creep resistance is higher



Why Diborides?

• Thermodynamically stable

– AFRL research focused on 
commercial materials that were 
further processed

– Melted or zone refined using 
induction heating apparatus

• Oxidation behavior• Oxidation behavior

– Carbides showed linear kinetics 
over wide temperature range

– Borides had parabolic kinetics at 
some temperatures and were 
deemed more promising

L.A. McClaine, “Thermodynamic and Kinetic 
Studies for a Refractory Materials Program” 
ASD-TDR-62-204



Densification Behavior

• Army funded densification studies 
of B4C, SiC, TiC, and TiN

– Pressures up to 120 ksi
or 850 MPa

– Reactive hot pressing

– Specimens were 1 inch in – Specimens were 1 inch in 
diameter

• Reported microstructures, 
strength and hardness

D. Kalish, E.V. Clougherty, and J. Ryan, 
“Fabrication of Dense Fine Grained Ceramic 
Materials” AMRA CR 6 7-04(F)



Why Zr and Hf Diborides?

• Initial study focused on comparing borides and other materials

• Part II compared different borides

• Ranked oxidation behavior

– HfB2 and ZrB2 best

– Ta, Ti, and Nb compounds – Ta, Ti, and Nb compounds 
were inferior

• Examined impact of metal to 
boron ratio on densification, 
oxidation, and physical 
properties

• Temperatures up to 2300°°°°C 
were needed for densification

L. Kaufman and E.V. Clougherty, “Investigation of Boride Compounds for 
Very High Temperature Applications” AFML-TR-68-190 



Oxidation Behavior

• Zr and Hf diborides were identified as the most promising

– Lowest oxidation rates

• SiC additions improved oxidation rate at intermediate temperatures

– Protective SiO2

scalescale

• HfB2 was better than
ZrB2

E.V. Clougherty, R.L. Pober, and L. 
Kaufman, “Synthesis of Oxidation 
Resistant Metal Diboride
Composites,” Transactions of the 
Metallurgical Society of AIME, 
242(6) 1077-1082 (1968).



Mechanical Properties
• Strength tested up to 1800°°°°C

• Range of relative density values

• ZrB2 and HfB2

– Nominally pure

– SiC additions

– Carbon additions

• Porosity reduces strength 
despite a decrease in grain size

• SiC reduces grain growth

• Carbon improves resistance
to crack propagation and reduces
elastic modulus

W.H. Rhodes, E.V. Clougherty, and D. Kalish “Research and 
Development of Oxidation-Resistant Diborides:  Mechanical Properties” 
AFML-TR-68-190 Part II, Vol IV. 

50 ksi ≈ 350 MPa



Thermal Properties

• Thermal conductivity measured 100°°°°C to 1000°°°°C by cut bar method

• Thermal diffusivity measured 1000°°°°C to 2000°°°°C by laser flash

• Also measured:

– CTE

– Total emittance
92 W/m•K

ZrB2

– CP

– ∆S and ∆H

• Built unique equip-
ment for their studies

E.V. Clougherty, K.E. Wilkes, and 
R.P. Tye, “Research and 
Development of Oxidation-
Resistant Diborides:  Thermal, 
Physical, Electrical, and Optical 
Properties” AFML-TR-68-190 Part 
II, Vol V. 

92 W/m•K

84 W/m•K

75 W/m•K



High Velocity Testing

• Inductively heated furnaces (cold gas, hot wall)

– Low velocity: 1 cm/sec, pO2 range 0.013 atm to 0.2 atm,
1 atm total pressure.

– High velocity:  100 m/sec, air

• Goal was to “bridge the gap” 
between furnace and arc between furnace and arc 
heater testing

• Temperature gradients
impacted results

– Induction heating 

– Inverse T gradient due to
insulating oxide scale

L. Kaufman and H. Nesor “Stability 
Characterization of Refractory Materials 
Under High Velocity Atmospheric Flight 
Conditions” AFML-TR-69-84 Part II, Vol II. 



Phase Equilibria

• Rudy designed equipment for ultra-high temperature studies

– Pirani furnace for melting of refractory materials

– Melting points, solidus studies 

E. Rudy and G. 
Progulski, “Ternary 
Phase Equilibria in 
Transition Metal-Boron-
Carbon-Silicon 
Systems:  Part III, Vol II.  
Special Test 
Procedures” AFRL-TR-
65-2



• Ta-Hf-C ternary system

• No maximum in melting
temperature between 
HfC and TaC!

Phase Equilibria

E. Rudy, “Ternary 
Phase Equilibria in 
Transition Metal-Boron-
Carbon-Silicon 
Systems:  Part II, Vol I.  
Ta-Hf-C System” 
AFRL-TR-65-2



Summary of Historic Studies

• Detailed fundamental studies were conducted in the 1960s and 70s

– AFRL-sponsored research in the U.S.

– Samsonov and others in in the U.S.S.R.

• Unique equipment was designed and built

• Significant advances in fundamental science• Significant advances in fundamental science

– Processing and densification

– Oxidation

– Mechanical behavior

– Thermal properties

– Phase equilibria and thermochemical properties



What Drove The Resurgence?

• Advanced aerospace vehicle concepts

– Hypersonic aviation

– Reusable atmospheric re-entry vehicles

– Air-breathing hypersonic missile systems

• Nuclear renaissance• Nuclear renaissance

– Advanced reactor designs

– Fuel cycles to minimize proliferation

• Other niche applications

– High temperature electrodes

– Microelectronics

– Molten metal handling

X-43B Hypersonic Concept 
Image Courtesy of NASA



• Strengths have improved due to 
the ability to produce fine grained, 
dense ceramics

– Historically 300-500 MPa

• Monteverde, Sciti, et al. have used 
silicides as sintering aids

– Hot pressing ~800 MPa

Strength

– Hot pressing ~800 MPa

– Sintering >500 MPa

• Chamberlain used attrition milling 
to reduce particle size

– >1000 MPa at room 
temperature 

W.H. Rhodes, E.V. Clougherty, and D. Kalish “Research and Development of Oxidation-Resistant 
Diborides:  Mechanical Properties” AFML-TR-68-190 Part II, Vol IV.
A. Balbo and D. Sciti, Mater. Sci. and Eng. A, 475 108-112 (2008)
A. Bellosi, F. Monteverde, and D. Sciti, Int. J. Applied Ceram. Technol., 3(1) 32-40 (2006). 

>0.25wt% O

<0.1wt% O



• Nominally pure ZrB2

– Strength proportional to inverse 
square root of grain size for 
dense ceramics

• ZrB2-SiC ceramics

– Thermal expansion mismatch 

Mechanical Behavior

– Thermal expansion mismatch 
results in residual stresses

– ZrB2 in tension

– SiC particle size controls strength

– Microcracking threshold for SiC
particle sizes around 12 µm 

J. Watts et al., J. Am. Ceram. Soc., 94(12) 4410-4418 (2011). 2 µm



• Nominally pure ZrB2

– Historically, relative density >98% not possible with grain size <50 µm

– O impurities are critical

– Pressureless sintering

• ZrB2-SiC compositions

– Historically, 2100°°°°C or higher

Densification

– Historically, 2100°°°°C or higher

– PS or HP at 1900°°°°C

– SPS at 1750°°°°C or higher

– Additives and particle size

W.G. Fahrenholtz et al., J. Am. 
Ceram. Soc., 91(5) 1398-1404 (2008). 



Oxidation

ZrB2-SiC with TaB2

Solid = 1200°°°°C
Dotted = 1400°°°°C 
Dashed = 1500°°°°C

• Historic studies

– Compared oxygen uptake, mass 
gain, and scale thickness

• Modern studies

– Mainly TGA studies and furnace 

oxidation at ≤1600°°°°C

– Modeling to understand mechanisms

Peng et al., J. Mater. Res. 24(5) 1855-
1867 (2009)
Parthasarathay et al.,  Acta Mater, 55, 
5999-6010 (2007)

– Modeling to understand mechanisms

– Best performance with silica scale 
formers plus modifying additives



Testing

• Historic studies

– Compared oxygen uptake, 
mass gain, and scale thickness

• Modern studies

– Arc heater testing

– Plasma wind tunnel reports by ISTEC– Plasma wind tunnel reports by ISTEC

– Torch tests and extreme 
temperatures from Harbin group

– Laser melting by Imperial

Monteverde and Savino, J. Am. Ceram. Soc., in press
J. Han, Compos. Sci. Technol., 68, 799-806 (2008) 



Summary of Recent Progress

• Interest in UHTCs grew in the 1990s

– Hypersonics, re-entry, and propulsion

• Mechanical behavior has been studied

– Improved strength due to finer grain sizes

– Strength-limiting features were identified– Strength-limiting features were identified

• Densification behavior was improved

– Control of surface oxide impurities and starting powder size

• Oxidation and testing have continued

– Modeling and additive studies

– Relevant environment testing



Key Issues for Implementation

• Fabrication technologies
Can parts be made to near net shape at reasonable cost?

• Properties
Is behavior representative of inherent properties?

• Performance
Improvements needed in resistance to oxidation, thermal 
shock, thermal cycling, and creep shock, thermal cycling, and creep 

Can we move 
from concept to 
an operational 
hypersonic 
flight vehicle?X-51 Concept 

Image Courtesy of NASA X-51 Test Vehicle
Image Courtesy of NASA



Thank you!



TPS Types

Ablative

Reusable Insulation

Shock wave Blunt sample

Sharp Leading Edge
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