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ABSTRACT 
Drying is known to play a major role in soils and 
buildings materials. Better understanding the physics 
may help saving cost and energy. Thus control of the 
drying kinetics is a key factor. 
In permeable porous media, capillary forces lead to 
constant curvature of the air/water interface. The value of 
the curvature and the shape of the interface depend 
strongly on the pore geometry. Thus small change in 
their shape may lead to main change of the air/water 
interface as the medium desaturates. As the surface is 
supplied with water the drying rate remains at a constant 
value set by the area of air/water interface close to the 
surface. 
A capillary tube of rectangular cross section maintains 
water layers in its 4 corners and reproduce well the 
drying regimes of a porous medium. Here we show that a 
small variation in the shape of the cross section modify 
drastically the invasion of air due to equilibrium of 
capillary forces. Moreover not only the corners but a 
large part of the cross section remains wet in particular at 
the entrance of the tube allowing a high drying rate. 
Pore distribution and the opacity of samples make it 
difficult to locate water and estimate capillary forces 
with accuracy. Using a simple geometry, we can observe 
the water distribution and measure the shape of the 
air/water interface with good resolution in imaging and 
in time. We observe that the drying rate is constant 
during the main period of the desaturation even if the 
air/water interface increases by a factor 10. Using 2D 
finite element method (FEM), we show that the air inside 
a large portion of the capillary tube is saturate with water 
vapor ; thus only a small part of the interface close to the 
entrance participate to the evaporation flux. More 
generally we can infer that below one pore diameter air 
is saturated and the air/water interface does not 
contribute to drying. The three basic regimes of drying 
kinetics in porous media assumes that the drying rate will 
decrease as the capillary forces are no longer able to 
provide water to the evaporation surface. 

In our tube, as desaturation goes further, the drying rate 
decreases even if the capillary flow still supply water to 
the surface. Again using FEM, we show that as the 
wetting surface at the entrance decreases the drying rate 
will decrease even if no receding front progress. In this 
situation, the air/water interface inside the tube 
contributing to the drying increase progressively but this 
is not enough to maintain the initial high rate. 
Interpreting only the water mass loss as a function of 
time, we may lead to wrong conclusions considering 
basics drying regimes. In Porous media with the same 
porosity and a slight variation in pore shape drying rate 
may differ by order of magnitude. Our understanding of 
the drying kinetics of a simple geometry opens way to 
control the pore distribution to tune the drying rate of 
porous media in situation where capillary effects are 
dominant. 
 
INTRODUCTION 
Put Many industrial processes involve materials 
containing water which eventually has to be removed. 
Drying is a required step which is generally strongly 
energy-consuming. Moreover, controlling drying kinetics 
is a key factor in soils for agriculture, food conditioning, 
building materials, paint and others coatings.  A better 
understanding of the physics of this phenomenon may 
help improving processes and decreasing the cost.  
When gravity effects are negligible with regards to 
capillary effects (typically if ρg<<γ/e), whatever the 
complexity of the material structure (from simple bead 
packings to soils) two main stages of drying are observed 
for an initially saturated permeable medium [1,2,6,7]. 
The basic physical origin of these regimes is generally 
assumed to be as follows: 
(i) The initial stage, i.e. the so-called Constant Rate 
Period (CRP), corresponds to a situation for which the 
capillary pressure acts like a strong pump supplying 
water to the free surface of the sample where evaporation 
occurs at a rate set by external conditions (air flow, 
temperature, hygrometry). 
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(ii) The second stage, Falling Rate Period (FRP), occurs 
when the saturation is sufficiently small so that the 
permeability is too low to allow the liquid to feed the 
free surface of the sample at the rate of evaporation 
governed by external conditions. A drying front appears 
and penetrates the sample, and water vapor has to diffuse 
from this front through the dry region of the porous 
system, which explains that the rate of evaporation 
significantly decreases in time. 
The observation of local water saturation and dynamics 
of the air/water interface inside porous media remains a 
challenge even with the help of sophisticated tools (MRI, 
confocal microscopy) in model systems (granular 
packings). Existing observations tend to confirm that 
when a dry front develops the drying rate decreases [3-
5]. Some knowledge exist concerning the role of wetting 
of the porous media by the fluid but nothing concerning 
the impact of the shape of the liquid-air interface on the 
drying rate. More precise observations are nevertheless 
possible in ultra-model porous media, i.e. capillary tubes, 
which thus appear to be a powerful means for an in-
depth understanding of the drying behavior of porous 
systems. In particular it was shown that a capillary tube 
reproduces the main regimes of drying of porous media 
[1, 8]. In these works a constant drying rate was 
associated with the penetration of a finger of air through 
the tube while liquid flows along the corners, and the 
subsequent decrease of the drying rate was associated 
with a depinning of the liquid film from the tube exit as a 
result of competition between gravity and viscous 
effects.  
Here we observe that in a simple capillary geometry with 
negligible gravity effects the rate of drying can 
significantly decrease (by a factor ten) without any 
receding dry front. With the help of 2D finite element 
method (FEM) we show that this effect is due to the 
shape of the liquid-air interface around the free surface 
of the sample which has a dramatic impact on the rate of 
evaporation. This finally demonstrates that there exist 
situations in which there is no receding front in the 
Falling Rate Period. This suggests that the drying rate of 
a more complex porous medium can be tuned through 
the exact pore shape distribution at the free surface even 
in regimes where capillary effects are dominant. 
 
1 Capillary re-equilibration 
We used glass capillary tubes with rectangular section (2 
x 0.1 x 10 mm3). When such a tube is put in contact with 
water, the liquid saturates it as a result of capillary 
effects. Once saturated with water the tube was clogged 
at an extremity with epoxy glue.   
Before commenting on the drying process itself, it is 
important to remark that the channel section was not 
perfectly rectangular. As appears from SEM images the 
spacing is larger (emax = 115 µm) in the center and 
narrower (emin = 95 µm) at the edges approximately with 
a parabolic shape. This means that the motion of an 
interface towards the sides of a tube is associated with an 

increase of the partial curvature (normal to j  see Fig. 1. 
b.) which can be adjusted by the second curvature 
(normal to i ) or leads to an increase of the Laplace 
pressure drop through the interface. 
 

 

 

 

 

 

 

 

 
Figure 1: Views from upper of the channel (open on the 
left) at different times during drying: (a) initial and after 
17 (b), 34 (c), 68 (d), 103 (e), 137 (f) and 163 min. (g). 
 
At the beginning of the drying the capillary tube is fully 
saturated with water so that evaporation occurs from the 
free surface of the system. Then the air/water interface 
curves towards the interior of the tube, while water 
remains at the free surface at both edges (see Fig. 1a). As 
desaturation goes further, the air forms a finger 
progressing in the capillary tube (see Fig. 1b). From that 
point the fingertip keeps a constant shape (approximately 
a half-circle of radius R =0.6 mm) and progresses with a 
constant speed leaving water layers of constant thickness 
h0=0.4 mm behind it along the tube edges (see Fig.1 c,d). 
During this period, in a cross-section behind the 
fingertip, air occupies 60% of the volume. Therefore the 
total saturation in the tube is 40% when the fingertip 
reaches the end of the capillary tube. After that the two 
water layers along the channel axis disconnect at the end 
and decrease homogenously in thickness until the very 
late stage of the drying (see Fig.1 d,e), in the limit of the 
camera resolution. 
Since capillary pressure plays a critical role in drying of 
porous media it is interesting to first study the 
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distribution and evolution of the curvature of the air-
water interface in time. Let us focus on the period of 
constant fingertip shape. The curvature of the interface in 
the plane of observation is determined from the images 
(Fig. 1.d) and the curvature in the orthogonal plane can 
be inferred from the spacing of the capillary. At the 

fingertip the total curvature ( R1 ) is approximately 
-1

max mm 1912 ≈+ Re ; along the straight part of the 
finger the interface is 0.4 mm from the edge, so that the 
spacing ( e ) is equal to 105µm (see fig 1.b) and the total 

curvature is 
-1mm 192 ≈e ; finally using as a first 

approximate h  as radius of curvature (but in a convex 
shape) in the plane of observation and the minimum 
spacing (along the edge) we find 

-1
min mm 5.1812 ≈- he  for the total curvature at 

the free surface. These results show that the capillary 
equilibrium is maintained everywhere in the fluid.  
This situation persists up to the time when the fingertip 
reaches the end of the tube, the total curvature is thus 
constant and uniform during all that period. This means 
that the liquid has at any time and everywhere a unique 
Laplace pressure drop with air pressure. Thus capillary 
forces govern the shape of the interface. Since this 
situation is similar to that assumed during the CRP in 
porous media we expect the drying rate to be constant 
until the very late desaturation when permeability in the 
remaining films is too low to pump water to the surface 
and a drying front progresses.  
The capillary pumping limit can be estimated as follows. 
When the liquid flow is governed by capillary effects the 
motion typically results from a pressure gradient of the 

order of eγ  (where γ  is the surface tension) applied 
to a liquid channel of cross-section eh . We find the 
velocity from a balance between the capillary pressure 
and viscous stress, which gives ( )µLeVcap γ≈  when 

eh > , from which we find -11 m.s 10.9 -≈capV , but 

when eh <  we rather have ( )eLµhVcap γ2≈ . On 
another side the drying rate may be expressed as a 

velocity: 
( ) -17 m.s 10.7dd1 -≈= tmSVdrying r

, with m 
the water mass and S the cross section area. Thus we see 
that during most of the process the capillary velocity will 
be much larger than the drying velocity, which means 
that capillary effects are able to supply water 
immediately when some water volume is removed from 
the free surface of the sample. A regime change can 

occur when capV
 becomes of the same order as dryingV

, 
which occurs for very small values of e , typically of the 

order of m 10 7−
, corresponding to a saturation of the 

order of 
410−

. 
 

2 Constant Rate Period 
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Figure 2: Water mass in capillary tube vs time of drying. 
Inset shows the scaled drying rate as a function of the 
saturation. 
 
According to the above calculations we should have an 
immediate supply of water towards the free surface, 
leading a priori to a constant drying rate imposed by the 
external conditions. This is not the case, actually the loss 
mass curve as a function of time shows that the drying 
rate is constant down to a saturation (water to available 
volume ratio) of 0.4, then it significantly decreases while 
there is still a continuous film along the channel. From a 
saturation of 0.4 to 0.2 the drying rate slowly decreases, 
then sharply until 0.1. Such variations are similar to 
those typically obtained in porous media [2] although the 
value of the critical saturation slightly varies with the 
system (for a bead packing it is around 0.1). In our case, 
at the critical saturation the interface is still with constant 
curvature which is a sign that capillary effects are still 
dominant. Moreover the tube remains wetted up to its 
exit until the very end of the drying (saturation of 0.01).  
Thus we observe a strong decrease of the drying rate in a 
model porous medium in an unexpected configuration. 
The drying rate decreases whereas the usual conditions 
for the CRP are still fulfilled, namely capillary effects 
able to pump the liquid from the porous medium up to 
the exit and a continuous film covering the solid surfaces 
throughout the sample. 
 
3 Premature Falling Rate Period 
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Figure 3: (top) Scheme of half the channel seen from 
upper and the liquid-air interface assumed in case (A) 
(dotted line around the entrance) and (B) (continuous 
line) assumed in the numerical simulations for the period 
of constant film thickness. (bottom) Different shapes (see 
text) assumed for the period of decreasing thickness.   
 
In order to understand this effect we model the water 
vapor field in the tube with the help of 2D Finite 
Elements Method (FEM). Here we neglect variations in 
the third dimension, which seems reasonable considering 
that the length scale in that direction is much smaller 
(100 µm) than in the two other directions (respectively 2 
and 8 mm), and we also neglect the impact, on the drying 
rate for a given shape of the liquid-air interface, of small 
thickness variations in the direction z, by considering the 
tube cross section as rectangular.  We will only consider 
here the case when the finger is already formed. For a 
straightforward analysis of the results we represent the 
interface shape by broken lines mainly characterized by 
two parameters: h  the thickness of the water layers and 
z  the length of the air finger (as shown on Fig. 3). First 

we look at the evolution of the drying rate as it 

progresses steadily ( mm 4.00 == hh ) and consider two 
possible shapes of the film at the entrance (see Fig 3.b): 
(A) constant film thickness; (B) linear transition from 

thickness 0 to 0h  over a distance 0h .  
We compute the vapor density distribution ( n ) 
associated with the interface shape at a given time 
assuming steady state diffusion and neglecting 
displacements of the interface induced by vapor flux. 
Such a description is justified by the fact that the 

diffusion velocity (of the order of 
-1m.s .10 ) is much 

larger that the drying velocity. As a consequence the 
Laplace equation ( 0=∆n ) captures the spatial field of 
vapor saturation. The boundary conditions are: n  is 

equal to the saturation vapor density 
-3

0 g.m 4.23=n  
along the liquid-air interface; we represent the effect of 
air flow along the exit as a region of rapid variation of 

the vapor density (down to 20nn =  along the outer 
surface of Ω ) over a distance δ  from the channel 
entrance, and we assume that along this region 0=⋅∇ sn  
(along the lateral outer interface) where s  is the normal 
vector. This diffusion length (δ ) is determined by fitting 
the drying rate during the initial stage of drying to that 
measured in our tests (after the air finger has just 
formed). We found  mm 094.0=δ  in the case (A) and 

mm 0073.0=δ  in the case (B).  
 

 
Figure 4: Relative humidity ( 0nn ) field as computed 
from simulations (represented here in terms of reduced 

relative humidity: 12 0 −nn  ) for the geometry (A) 
when z = 4.6 mm. The lines correspond to isovalues for 
the relative humidity: (from left to right) 50% (vertical 
line), 80, 90 and 99%. 
 
A typical vapor density field is shown in Figure 4. It 
appears that the vapor saturation is reached beyond a 
short distance from the entrance, of the order of the 
channel width. Our simulations show that his trend does 
not change when the finger penetrates farther in the 
channel so that the impact of the increase of the liquid-
air interface on the drying characteristics is questionable.  
In order to better appreciate it we can compute the vapor 
flux through the section situated at a distance x

 in the 

channel, which is equal to 
∫ =

⋅∇−=
0 

d  )(
xx

nDxF s
, 

where 
-12-5 s.m 10 7.2=D  is the diffusion coefficient of 

water in air. )(xF  corresponds to the contribution to the 
drying rate of the air/water interface beyond x , and 

)0(FJ =  is the total drying rate from the sample.  
The first important observation is that for both 
geometries (A and B) J  is perfectly constant for 

wz 5.0> . This confirms that the increase of the area of 
the liquid-air interface has no impact on the evaporation 
from the sample. This effect results from the fact that the 
vapor density mainly varies over an entrance length of 
the order of the channel width, leading to a rapid 
decrease of the contribution to the drying rate from the 
liquid-air interface situated at larger distance from the 

entrance. More precisely )(xF  decreases exponentially 
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with x  and )0(10)( 3 FwxF −≈=  for both 
geometries. 
This result also implies that the thickness of the liquid 
films beyond the entrance length has no impact on the 
drying rate. Since our experimental data show a strong 
decrease of the drying rate in a regime where the film 
thickness decreases this suggests that this is the shape of 
the interface around the channel entrance which plays a 
critical role on the drying rate.  
In order to test this idea we looked at the impact of the 
geometry when the film thickness ( h ) decreases. The 
exact shape of the air/water interface is not measured 
with enough accuracy in our experiments, so to model 
the variety of evolution we consider three scenarios 
based on parameter h for the entrance shape of the 
interface, which cover the various trends that can be 
expected for the evolution of this shape (see Figure 3): in 
(C) the angle between the interface and the channel axis 
is fixed at 45°; in (D) the distance of transition is 

maintained to 0h , which implies to decrease the angle; 
in (E) this is the length of the transition region which is 
kept constant. We then represent the scaled drying rate as 
a function of the saturation (see Figure 5), i.e. the ratio of 
the area of the liquid region to the whole area of the 
geometry. 
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Figure 5: Scaled drying rate as a function of the 
saturation for our simulations (black) with different 
shapes of the entrance interface in the period of 
decreasing film thickness. 
 
In all three configurations, the drying rate decreases 
when h decreases, i.e. when the saturation decreases, but 
the exact kinetics varies drastically with the shape of the 
liquid-air interface at the entrance. In fact the main 
characteristics changing from (C) to (E) is the slope (α ) 
of the interface from the entrance: we have °= 45α  for 

(C), 0tan hh=a  for (D) and 

( )( ) 2/12
0 1tan

−
−= hha . This in particular implies that 

the distance of junction between the slope and the 
constant thickness region is farther from (C) to (E), and 
finally the area of the interface in this region is smaller. 
This qualitately explains that the drying rate decreases 
faster from (C) to (E) since we have seen that the vapor 

flux decreases with the distance from the free surface of 
the sample.  
 
CONCLUSIONS 
These results can be extrapolated to more complex (real) 
porous media. When capillary effects are dominant, if 
wet patches are sparse, the evolution of the exact shape 
of the liquid/air interface will govern the evaporation 
rate. Even with the same porosity a slight variation in 
pore shape, in particular close the free surface of the 
sample, can induce variations of the drying rate by orders 
of magnitude. Thus there may exist situation in which 
there is no receding front in the Falling Rate Period. 
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