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ABSTRACT                                                                      
The present paper discusses the numerical solution of the 
Burgers’ equation arising in longitudinal dispersion 
phenomenon in fluid flow through porous media. In the 
porous medium pure water, salt water or contaminated water 
disperse in longitudinal direction gives rise to a non-linear 
partial differential equation in the form of Burgers’ 
equation. The equation is solved by using Crank-Nicolson 
finite difference scheme with appropriate initial and 
boundary conditions. The longitudinal dispersion 
phenomenon may be miscible or immiscible fluid flow 
through porous media. The problem of miscible 
displacement can be seen in the coastal areas, where fresh 
water beds are gradually displaced by sea water. 
Longitudinal dispersion phenomenon plays an important 
role to control salinity of the soil in western seashore region 
of the Gujarat state in India. To control salinity, the 
government of Gujarat has developed many check dams 
from where contaminated water diverted and poured to the 
soil of the farms, where the crops of cumin seed (jeera), 
fennel (saunf) and other grains are grown. In this region due 
to the infiltration of this infiltered water, free surface of 
sweet water table rises, consequently, saline seawater cannot 
cross the threshold in the nearby area of the seashore. In 
such a way, the dispersion of contaminated water plays key 
role to solve salinity problem. The immiscible dispersion 
also plays an important role in petroleum engineering during 
secondary oil recovery process, in which water or gas is 
injected in oil formatted area to drive the oil towards 
production well. An unconditionally stable Crank-Nicolson 
finite difference scheme has been employed to find the 
concentration C(X, T) of salty or contaminated water 
dispersion in uni-direction. The outcome is consistent with 
physical phenomenon of longitudinal dispersion in miscible 
fluid flow through porous media. It is concluded, that the 
concentration C(X, T) decreases as distance X as well as 
time T increases. The tables and graphs are developed by 
using MATLAB coding.    

INTRODUCTION                                                             
The region of the soil that is unsaturated is known as the 
vadose zone (or unsaturated zone), and this is the region 
where the most interesting nonlinear hysteretic behaviour is 
observed. As shown in the Fig. 1 saturated zone is one in 
which the entire void space is occupied by water. In the 

unsaturated zone, only part of the void space is occupied by 
water and the remainder being occupied by a gaseous and 
possibly by a non-aqueous phase liquid. In saturated ground 
water aquifers, all available pore spaces are filled with 
water. Above a capillary fringe some part of pore spaces 
also contains air. 

 

Figure 1: Natural and earth section view of saturated     zone 
and unsaturated zone.                                                         

The mixing of viscous fluids is a most common incidence in 
chemical engineering applications. Similar processes 
encountered in environmental problems such as the 
spreading of aqueous or non aqueous pollutants following an 
accidental discharge. The mixing of these pollutants with 
surrounding water flows generally includes underground 
porous layers. And the dispersion is a macroscopic 
phenomenon caused by a combination of molecular 
diffusion and hydrodynamic mixing occurring with laminar 
flow through porous medium [2, 8, 17]. 

Analyzing the generic case of two fluids in contact flowing 
(simultaneous flow) through a porous medium it is observed 
that mixing is almost associated to the random walk of fluid 
(or tracer) particles through the disordered structure of the 
pore volume and thermal molecular agitation is dominant 
only at very low mean flow velocities. The steps of the 
random walk are much larger than those of thermal 
Brownian motion so that the corresponding spreading scale 
and the width of the dispersion front are correspondingly 
increased. Of course, the minimum size of heterogeneities of 
the mixture obtained in this way is also larger; however, if 
the medium is adequately homogeneous, this size is of the 
order of the grain diameter so that molecular diffusion can 
generally complete the mixing. This mixing is known as 



 
 

hydrodynamic dispersion and it is referred to as mixing of 
miscible fluids. 

The flow of groundwater in coastal aquifers, as shown in the 
Fig. 2, can be treated as an interface problem in which two 
fluids of different densities, fresh water and salt water, have 
a clear interface rather than a transition zone. This flow 
problem assumes that the fresh water flows over the salt 
water which is at rest [3, 17].  

Figure 2: Interface flow in coastal aquifer 

Saltwater intrusion, in which saline water displaces or mixes 
with fresh groundwater, is one of the major causes of 
groundwater contamination. Saltwater intrusion is usually 
caused when the hydrodynamic balance between the fresh 
water and the saline water is disturbed, such as when fresh 
groundwater is over pumped  in coastal aquifers. Saltwater 
intrusion can also occur when the natural barriers that 
separate fresh and saline water are destroyed, such as in 
construction of coastal drainage canals that enable tidal 
water to advance inland and percolate into a freshwater 
aquifer. 

 

Figure 3: Upcoming of salt water under a pumping well. 

Fig. 3 depicts a situation in which water is pumped from a 
freshwater zone under laid by a saline water layer. The 
interface between fresh water and saline water rises toward 
the well in a cone shape as shown in the Fig. 3. 

Controlling the intrusion of saline water before it 
contaminates an aquifer system is desirable because 
removing it once it has developed is difficult. Years may 
require restoring normal conditions. In coastal aquifers, 
according to Ghyben-Herzberg, fresh water exists below sea 
level for every meter of fresh water above sea level [3, 8].    

The problem of miscible displacement often observed in 
coastal areas, where the fresh water beds are gradually 
displaced by sea water. These day’s efforts are being made 
by the environmentalist to dispose the atomic waste products 
born from nuclear reactor and dumped inside the ground by 
using the same phenomenon of displacement. Among Many 
flow problems in porous media, one involves fluid mixtures 
called miscible fluids. A miscible fluid is a single phase 
fluid consisting of several completely dissolved 
homogenous fluid species, a distinct fluid-fluid interface 
doesn’t exist in a miscible fluid. The flow of miscible fluid 
is an important incidence in petroleum industry; an 
enhanced oil recovery technique in oil reservoir involves 
injecting a fluid (solvent) that dissolves into the reservoir’s 
oil [1, 6, 9]. 
 
In a miscible displacement process a fluid is displaced in a 
porous medium by another fluid which is miscible with the 
first fluid. Miscible displacement in porous media plays an 
important role in many engineering and science fields such 
as oil recovery in petroleum engineering, contamination of 
ground water by waste product disposed, underground 
movement of mineral in the soil and recovery of spent 
liquors in pulping process[7, 10]. 
 
The key benefit of this research is to improve conceptual 
models how all contaminants migrate through 
homogeneous, variably-saturated, porous media. These 
problems of dispersion have been receiving considerable 
attention from chemical, environmental and petroleum 
engineers, hydrologists, hydro-geologist, mathematicians 
and soil scientists.  
 
Most of the works reveal common assumption of 
homogenous porous media with constant porosity, steady 
seepage flow velocity and constant dispersion coefficient. 
For such assumption Ebach and White (1958) studied the 
longitudinal dispersion problem for an input concentration 
that varies periodically with time and Ogata and Banks 
(1961) for a constant input concentration. Hoopes and 
Herteman (1965) studied the problem of dispersion in radial 
flow from fully penetrating; homogenous, isotropic non-
adsorbing confined aquifers. Bruce and street (1966) 
considered both longitudinal and lateral dispersion with in 
semi finite non adsorbing porous media in a steady 
unidirectional flow fluid for a constant input concentration. 
Marino (1978) considered the input concentration varying 
exponentially with time. Al-Niami and Rushton (1977) and 
Marino (1974) studied the analysis of flow against 
dispersion in porous media. Basak (1978) presents an 
analytical solution to the problem of Evaporation from a 
horizontal soil column in which diffusivity increases linearly 
with moisture content and also to a problem of concentration 
dependent diffusion with decreasing concentration at the 
source. Hunt (1978) applied the perturbation method to 
longitudinal and lateral dispersion in no uniform seepage 



 
 

flow through heterogeneous aquifers. Wang (1978) 
discussed the concentration distribution of a pollutant 
arising from a instantaneous point source in a two 
dimensional water channel with non uniform velocity 
distribution. He employed Gill’s method to solve the 
convective diffusion equation. Kumar (1983) discussed the 
Dispersion of Pollutants in Semi-Infinite Porous Media with 
Unsteady Velocity Distribution. Mehta and Patel (2005) 
applied Hope-Cole transformation to unsteady flow against 
dispersion of miscible fluid flow through porous media. 
Mehta and Saroj (2009) considered that the longitudinal 
dispersion coefficient is directly proportional to the 
concentration and the velocity component in direction of X-
axis is considered directly proportional to ratio of distance x 
and time t. Also, this phenomenon has been discussed by 
Mehta & Meher (2010) using Backlund Transformations, 
Mehta & Joshi (2012) using Group theoretic approach.  
The present paper discusses the numerical solution of 
nonlinear partial differential equation for longitudinal 
dispersion phenomenon in x-direction which takes place 
when miscible fluids mix and flow in uni-direction. The 
mathematical formulation of the problem leads to a non-
linear Burgers’ equation whose numerical solution has been 
obtained by unconditionally stable Crank-Nicolson finite 
difference scheme.  

NOMENCLATURE                                             
 0C     Initial input concentration of contaminant              
 C      Concentration of contaminant in liquid phase             
ρ        Density of the mixture                                                   

V        Pore seepage velocity vector.                                 

LD      Longitudinal dispersion coefficientγ  based on  u     
t          Time (s)                                                                           
x         Linear distance coordinate (m) 

1 Statement of the problem 

Miscible displacement in porous media is a type of double-
phase flow in which two phases are completely soluble in 
each other. Therefore, capillary forces between the fluids do 
not come into effect. The longitudinal dispersion of the 
contaminated or saline water with the concentration C(x, t) 
flowing in the x-direction has been considered, the 
homogeneous porous medium is saturated with fresh water. 
The miscible flow (contaminated or saline and fresh water) 
under conditions of complete miscibility could be thought to 
behave, locally at least, as a single-phase fluid, which would 
obey Darcy’s law. The change of concentration, in turn, 
would be caused by diffusion along the flow channels and 
thus be governed by the bulk coefficients of diffusion of the 
one fluid in the other. There is no mass transfer between the 
solid and liquid phases, is assumed [2, 4, 5]. The miscible 
flow takes place both longitudinally and transversely, but 

the spreading caused by dispersion is greater in the direction 
of flow than the transverse direction. 

Figure 4: Longitudinal and Transverse dispersion 

The problem is to describe the growth of the mixed region, 
i.e. to find concentration C(X, T) of the contaminated water 
as a function of time t and position x, as two miscible fluids 
flow through homogeneous porous media. Outside of the 
mixed zone (on either side) the single-fluid equation 
describes the motion of fluid.  

2 Mathematical formulation of the Problem 

In the present problem it is considered that the dispersion 
zone is in one direction i.e. x-direction. One dimensional 
treatment of dispersion phenomena avoids the radial or 
transverse component of dispersion.  

According to Darcy’s law, the equation of continuity for the 
mixture, in the case of incompressible fluids is given by 
Bear [2, 3]. 

( ) 0div V
t
ρ ρ∂
+ ⋅ =

∂  
             (1) 

where, ρ  is the density for mixture and  V   is the pore 
seepage velocity vector. 

The equation of diffusion for a fluid flow through a 
homogeneous porous medium, without increasing or 
decreasing the dispersing material is given by 

( )C Cdiv CV D div
t

ρ
ρ

  ∂
+ ⋅ = ∇ ⋅   ∂   

           (2) 

where, C is the concentration of the fluid A into the other 
host fluid B (i.e. C  is the mass of fluid A per unit volume 

of the mixture) and D  is the tensor coefficient of dispersion 

having unit 2 1length time− ⋅   with nine components ijD
. In a laminar flow through a homogeneous porous medium 
at constant temperature ρ may be considered as constant.  
Then 



 
 

0div V⋅ =           (3) 

Hence equation (2) can be written as 

.C V C div D divC
t

∂
 + ⋅∇ =  ∂

          (4) 

When the seepage velocity V  is along the x-axis, the non-
zero components are  

11 2
0

L
LD D

C
= =  (Coefficient of longitudinal dispersion) 

and 22D D=  (Coefficient of transverse dispersion) and 

other 'i jD s  are zero. In this case the equation (4) becomes 

[3, 5, 9, 11, 12, 14],                                                                                 
2

2L
C C Cu D
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
              (5) 

Where, u  is the component of flow velocity V  along the 

x-axis having the dimension 1length time− ⋅   it is time 

dependent along the x-axis in the non-negative direction and  
0LD γ= > , it is the cross sectional flow velocity of porous 

medium.  
By Mehta [12, 13, 14] it has been observed that seepage 
flow velocity u  is related with concentration of the 
dispersing material as 

( )
0

,
0

C x t
u for x

C
= >             (6) 

where, the concentration of the contaminated water at x = 0 
is very high  and it is constant  0 1C ≅  (Mehta 2006) By 
using equation (6) in the equation (5), we get, 

2

2 ; 0C C CC x L
t x x

γ∂ ∂ ∂
+ = ≤ ≤

∂ ∂ ∂
 (7) 

where, γ  is the coefficient of longitudinal dispersion. 
The equation (7) is a governing non linear Burgers’ equation 
for longitudinal dispersion of miscible contaminated water 
flow through porous media. As given in the statement, the 
dispersion is uni-directional displacements flow through 
semi-finite homogeneous porous media, the seepage flow 
velocity of contaminated water is assumed unsteady. Here 
the initial concentration of dispersion is considered as an 
input highest constant concentration of contaminants at         

0x =  is 0C . The porous medium is considered as non-

adsorbing. The governing partial differential equation (7) for 
longitudinal hydrodynamic dispersion with in a semi finite 
non adsorbing porous medium in a unidirectional flow field 
in which γ  is the longitudinal dispersion coefficient, C   is 
the average cross-sectional concentration,  u  is the unsteady 
seepage velocity,  x  is a coordinate parallel to flow and t is 
time. 

 
3 Numerical Solution of the problem using 
   Crank-Nicolson Scheme 
To make the equation (7) dimensionless, we set the 
dimensionless variables as 

andx tX T
L L

= =   so that 0 1, 0 1X T≤ ≤ ≤ ≤ .  

Hence, the equation (7) reduces to 
2

2 ; 0 1C C CC X
T X X

γ∂ ∂ ∂
+ = ≤ ≤

∂ ∂ ∂
 (8) 

The appropriate initial and boundary conditions are taken as  

( ) ( )
( )
( )

2

0

1

, 0 1 , 0 1

0, 1 , 0 1

1, 0.001 , 0 1

C X X X

C T C T

C T C T

= − < ≤

= = < ≤

= = ≤ <

 (9) 

 
The non-linear partial differential equation (8) has been 
discretized by using Crank-Nicolson finite difference 
scheme as follows [4, 15, 16, 18]:  
To handle the non-linear co-efficient C   the value of  

1, 2i n
C

+
  at the half time level is  

( )
( )

( )

1, 1,
,

1 ,, 2
1, , 1,

2

.
2

2 2

i n i n
i n

i ni n
i n i n i n

C C
C

XT
C C

C C C

X
γ

+ −

+
+ −

−
− +

∆∆
= +

− +

∆

 
 
 
        

 
 

(10) 

Let the ratio ( )2r T X= ∆ ∆ expression (10) becomes, 

( )
( )
, 1, 1,

1 ,, 2
1, , 1,

.

4 2 2

i n i n i n

i ni n
i n i n i n

C C C Xr
C C

C C Cγ

+ −

+

+ −

− − ∆ +
= +

− +

 
 
  

 (11) 

The Crank-Nicolson finite difference scheme of the equation 
(8) is  as under: For 2 1i R≤ ≤ −  

1, 2
1, 1 , 1

1, 2
1, 1

1, 2
1, ,

1, 2
1,

12
2

2

12
2

2

i n
i n i n

i n
i n

i n
i n i n

i n
i n

C
X C C

r

C
X C

C
X C C

r

C
X C

γ γ

γ

γ γ

γ

+

− + +

+

+ +

+

−

+

+

    + ⋅∆ − + +    
 
 − ⋅∆
  

    = − + ⋅∆ + −    
 
 − − ⋅∆
  

 

(12) 

 

For 1i =  



 
 

( )
( )

1, 2, 1,

1 1,1, 2
2, 1,

. 2

4 2 3 2

n n n

nn
n n

C C C Xr
C C

C Cγ+

− + − ∆
= +

+ − +

 
 
  

  (13) 
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(14) 

For i R= the scheme is  

( )
( )

, , 1,

1 ,,
2

1, ,

. 0.002

4 2 3 0.002

R n R n R n

R nR n

R n R n

C C C Xr
C C

C Cγ

−

+

−

+ − ∆
= +

+ − +

 
 
  

 (15) 

And the scheme is 
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(16) 

 

Figure 5: The Concentration ( ),C X T  vs. dist. X for r =0.48
 

 

 

Figure 6: Graph of the Concentration ( ),C X T  vs. time T
for r =0.48 
 

 

 

 

 

Table 1: Concentration ( ),C X T  Vs. X at time 0T >  
 

Concentration C(X, T)   dX=0.025  dT=0.0003        
Ratio r =0.48 

X\T T=0.03 T=0.06  T=0.09 T=0.12 T=0.15 
0 1 1 1 1 1 
0.05 0.92765 0.93514 0.94009 0.94361 0.94618 
0.10 0.85552 0.87311 0.88481 0.89315 0.89923 
0.15 0.78202 0.80941 0.82778 0.84092 0.85050 
0.20 0.70842 0.74482 0.76956 0.78732 0.80028 
0.25 0.63589 0.68017 0.71074 0.73277 0.74889 
0.30 0.56550 0.61623 0.65188 0.67770 0.69664 
0.35 0.49814 0.55374 0.59352 0.62251 0.64383 
0.40 0.43453 0.49332 0.53617 0.56760 0.59077 
0.45 0.37517 0.43552 0.48026 0.51329 0.53772 
0.50 0.32039 0.38072 0.42614 0.45988 0.48492 
0.55 0.27036 0.32920 0.37405 0.40759 0.43256 
0.60 0.22511 0.28107 0.32417 0.35659 0.38079 
0.65 0.18452 0.23635 0.27654 0.30694 0.32971 
0.70 0.14835 0.19487 0.23111 0.25866 0.27936 
0.75 0.11622 0.15639 0.18775 0.21170 0.22973 
0.80 0.08766 0.12054 0.14623 0.16591 0.18076 
0.85 0.06207 0.08687 0.10623 0.12112 0.13237 
0.90 0.03875 0.05484 0.06740 0.07708 0.08440 
0.95 0.01691 0.02388 0.02933 0.03352 0.03670 
1 0.001 0.001 0.001 0.001 0.001 
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Figure 7: 3D behaviour of the Concentration ( ),C X T  
versus distance X for different time T. 

CONCLUSIONS   

The graphical and numerical solutions have been obtained to 
predict the possible concentration of a contaminated water in 
unsteady unidirectional seepage flow, through semi-finite, 
homogeneous, isotropic porous media subject to the source 
concentration that vary with the distance X and time 0T > . 
From the tabular values and graphs it is concluded that as 
distance X and time T increases the concentration of the 
contaminant water gradually decreases. The concentration                                                              
C(X, T) of the contaminated water decreases as the distance 
X increases for the given time T > 0. Here the initial 
concentration of contaminated water at X=0 is highest and it 
decreases as distance X increases for given time T > 0.  It is 
physically fact that at the source the concentration of 
contaminated water is always highest and it is decreasing 
and dispersing from the source. It is also concluded from the 
graph (Fig. 6) of the concentration of contaminated water 
verses time T for given distance X , the concentration of 
contaminated water is increasing for small time T and then it 
becomes steady and constant as time T increases for given 
distances X=0.1, 0.2, 0.3, 0.4, 0.5. Hence, it is fact that at 
the initial source the dispersion of contaminated water is not 
fast, therefore the concentration of contaminated water is 
slightly increasing for small time T, for fixed distance X and 
then it becomes constant throughout the time for given 
distance X.  

 The numerical solution obtained here is immensely 
useful to control the intrusion of saline water before it 
contaminates the fresh water aquifer system; it is also 
helpful in making quantitative predictions on the possible 
contamination of groundwater supplies resulting from 
groundwater movement through buried wastes. The result is 
consistent with the physical phenomenon of longitudinal 
dispersion in miscible fluid flow through porous media.
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