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ABSTRACT 

The phenomenon of natural convection and thermal 
radiation heat transfer in fluid-saturated high temperature 
packed beds has been widely studied due to its various 
applications ranging from solar collectors to high 
temperature gas cooled reactor. With the local thermal 
non-equilibrium model, the majority of the numerical 
simulation studies on natural convection and radiation 
heat transfer in fluid-saturated porous media have limits. 
In these studies the internal heat transfer coefficients 
have always been calculated as the existing formulas, 
which were obtained by the experiments of forced 
convection in porous media [1-2]. However, natural 
convection heat transfer in porous media is dominated by 
the temperature difference between solid particles and 
fluid, which is different with the forced convection in 
porous media. For thermal radiation in porous media, the 
Rosseland diffusion approximation model has always 
been used in simulations by researchers [3-4], in which 
the mean absorption coefficient are not calculated 
according to the experiments and need to be determined 
by ray-tracing Monte Carlo simulations. Based on high 
temperature packed pebble beds, this study is aimed to 
compare the volume-averaged simulations and pore-scale 
simulations of high temperature packed beds, and predict 
the effective thermal conductivities of packed beds with 
temperature up to 1600℃. 

The effective thermal conductivities of the pebble 
beds under different temperatures are essential 
parameters in simulation models to analyze the 
maximum fuel temperature and temperature distribution 
in the reactor core in the reactor safety analysis. The 
SANA test facility was installed at the Research Centre, 
Julich in Germany specifically to investigate the heat 
transport mechanisms inside the core of a high 
temperature gas cooled reactor (HTGR). The validation 
of the volume-averaged approach and pore-scale 
approach are based on the experimental data of SANA 
test [5]. 

In high temperature helium-saturated annular 
packed pebble bed, the inner wall has a heat source and 
the outer wall is isothermally cooled at a lower 
temperature. The top and bottom walls are kept adiabatic. 
In the volume-averaged simulations, local thermal non-
equilibrium model with the revised internal heat transfer 
coefficients and radiative heat flux is applied as the 

energy equation, and no uniform porosity distribution is 
used. To describe the random packed structure, PFC 3D 
software is used to simulate the spheres packing, which 
is used for direct pore-scale numerical simulations. 
Natural convection and thermal radiation in a 2D circular 
cross section of the annular pebble bed have been carried 
out. The effective thermal conductivities and temperature 
distributions of volume-averaged and pore-scale 
simulations of the high temperature helium-saturated 
annular packed pebble bed are corresponded well with 
the existed experimental data with temperature below 
1000℃, and predict the effective thermal conductivities 
of the pebble bed core with temperature up to 1600℃, 
which are vital references for thermal hydraulic designs 
of high temperature gas cooled reactor core. 
 
INTRODUCTION 

Packed beds are widely used in variety of industries, 
such as catalytic reactors, absorption towers, packed bed 
regenerators and high temperature gas-cooled reactors. 
The heat transfer in an enclosure with high temperature 
packed beds have been gaining interest, because 
exploring the coupled mechanism of conduction, natural 
convection and thermal radiation in high temperature 
packed bed enclosures aids in improving the design of 
many applications. 

There are two main approaches for the CFD 
simulation of the geometry of the closely packed beds: 
the volume-averaged approach and the pore-scale 
approach. In the volume-averaged approach, an averaged 
concept of porosity is applied to simulate the closely 
packed geometry. As the internal heat transfer between 
solid particles and fluid is small because of natural 
convection in the enclosure, the temperature difference 
between solid and fluid cannot be ignored. So the local 
thermal non-equilibrium model is quite necessary for 
high temperature packed beds in an enclosure. Reda [6] 
has carried out the experimental investigation of a finite 
vertical cylinder with a heat source at the inner and 
constant temperature at the outer. The results showed that 
the radial temperature drop across the annulus was found 
to systematically depart from the finite-length cylinder as 
heat power was increased. Rajamani et al [7] have 
studied the natural convective heat transfer in an annular 
cylinder embedded with porous medium and discussed 
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the effect of aspect ratio and radius ratio of the annulus 
on the heat transfer rate.  Raptis [8] has investigated the 
heat transfer behavior of vertical plate in porous medium 
subjected to constant suction velocity. Inspired by 
electric heating elements, Yih [9] has studied the effect 
of radiation on natural convection in a vertical cylinder 
embedded with porous medium. Cherif and Sifaoui [10] 
have considered radiation along with conduction and 
convection to predict the heat transfer behavior in a 
cylindrical enclosure. The problem of heat transfer in 
saturated porous vertical annulus with combined effect of 
radiation and convection has been studied by Badruddin 
et al. [11]. Hossain et al [3] has studied numerically the 
combined effect of conduction-convection-radiation on 
natural convection flow of an optically thick Newtonian 
fluid with gray radiant properties, confined in a porous 
media square cavity. In these studies, the internal heat 
transfer coefficients have always been calculated as the 
existing formulas of local velocity. For thermal radiation, 
the Rosseland diffusion approximation model has always 
been used in simulations in which the mean absorption 
coefficient are not calculated according to the 
experiments and need to be determined by ray-tracing 
Monte Carlo simulations for application simulations. The 
problem of heat transfer in porous annular cylinder 
requires attention as it has many practical applications 
such as gas cooled reactor vessels, and it is necessary to 
revise and apply the volume-averaged approach with 
local thermal non-equilibrium model to applications, 
such as the SANA test.  

With the dramatic progress in computational 
capability, a pore-scale approach for packed beds has 
been adopted by many researchers to simulate the 
distribution characteristics of gas flow and temperature 
within closely random packed beds, whose geometry is 
realistically modeled in the simulations. For natural 
convection in packed bed, Merrikh and Lage (12-13) 
have studied natural convection in a differentially heated 
square enclosure filled with discrete conducting square 
solid blocks. The study covered fluid Rayleigh number 
(Ra) from 105 to 108 and fluid-to-solid thermal 
conductivity ratio κ from 0.1 to 10. Good agreement 
between the continuum and porous-continuum model 
results. Braga and de Lemos [14] has analyzed laminar 
natural convection in regularly distributed particles with 
different geometry. Pourshaghaghy et al. [15] have 
studied a porous medium formed by a number of 
randomly distributed solid obstacles. Porous media and 
packed bed are usually regarded as semi-transparent 
media with certain optical thickness, which is obtained 
by ray-racing Monte Carlo method [16]. Cheng et al [17] 
have proposed a new approach to calculate the radiation 
heat transfer in a packed bed from its structure using the 
Voronoi network model and evaluated the effective 
thermal conductivity by taking into account the effect of 
the radiation heat transfer. The coupled simulation of 
natural convection and thermal radiation in packed beds 
by CFD are rarely except that transient heat transfer by 
free convection in a simple cubic sphere packed structure 

has studied by Laguerre et al [18] experimentally and 
numerically. However, this study is aimed to simulate the 
pore-scale of the natural convection, conduction and 
thermal radiation coupled heat transfer in random packed 
beds by CFD software. 
 
NOMENCLATURE 
r = Radius, m 
d = Diameter, m 
H = Height of packed bed, m 
k = thermal conductivity, W/m∙K 
F = Inertia coefficient constant 
H = Height of packed bed, m 
𝑐𝑝 = Isobaric specific heat, J/kg∙K 
T = Temperature, K 
z = Coordinate in axial direction, m 
u = Pore velocity in radial direction, m/s 
w = Pore velocity in axial direction, m 
ℎ𝑣 = Volumetric heat transfer coefficient 
𝜆𝑑 = Thermal dispersion coefficient 
𝐸 = Young’s modulus, Pa 
𝑅𝑅 = Rayleigh number 
𝑄 = heat flux, W 
Greek Symbols 
𝜀 = Porosity 
𝜌 = Density, kg/m3 
𝜌 = Density 
𝜇 = Viscosity, Pa∙ s 
Subscripts 
i = Inner  
o = Outer  
p = Particle 
eff = Effective  
f = Fluid  
s = Solid  
b = Bulk 
stag = Stagnant 
m = Mean 
Superscripts 
* = effective 
1 Models of computation 
1.1 Volume-averaged model 
1.1.1 Physical models 

In this work, the revised volume-averaged model 
for high temperature packed beds have to be validated by 
experimental results obtained from the SANA test 
facility, shown in Fig. 1(a). The test facility consisted of 
a central heating element. The inner radius 𝑟𝑖  of the 
pebble bed is 0.07m, the inner radius 𝑟𝑜 is 0.75m and the 
height is 1.0 m. The top and bottom of the facility is 
well-insulated. For the tests conducted with the 60mm 
diameter graphite pebbles, measurements were taken of 
the pebble temperatures at different radial positions close 
to the bottom of the pebble bed (height 90 mm) as well 
as at the center (height 500 mm) and top (height 910 
mm). Considering the axial symmetry of the pebble bed, 
only the cross section of the vertical annular is used for 
simulation with the real size, as shown in Fig. 1(b). Both 
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in the two steady models, the top and bottom walls are 
adiabatic. The inner wall is constant heat flux, whereas 
the outer wall is constant temperature according to the 
experimental data. The temperature dependent material 
properties of helium are as prescribed by the nuclear 
safety standards commission (KTA, 1983). The thermal 
properties of graphite are referred to the experiment 
SANA test results. 
 

     
(a)  SANA test [5]                   (b) Computational model 

Figure 1: SCHEMATIC OF SANA TEST AND 
COMPUTATIONAL MODEL 

 
1.1.2 Governing equations 

In this work, accounting for the spatial non-uniform 
porosity distribution of pebble bed, the volume-averaged 
model is consist of Darcy – Brinkman – Forchheimer 
model and local thermal non-equilibrium model to 
describe the momentum and energy transportation. 
Continuity equation 
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Energy equation 
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The porosity distribution [19] 
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The permeability K and geometric function F of 
packed beds are based on Ergun’s model [20] as 

3 2

2 3/2
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ε
ε ε
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−

，                             (7) 

The internal heat transfer coefficient is different 
from others researchers, who always use the relations of 
Re number. It is reasonable to adopt the heat transfer 
coefficient of natural convection along a sphere [21]. 

1/4(2 0.428( ) ) /sf f ph k Ra d= +                             (8) 
A multi-sphere unit cell model derived by Van 

Antwerpen [22], which considers both short and long 
radiation in pebble beds, is adopted for the simulations. 

The effective porosity [23] s stag

s f

k k
k k

ε ∗ −
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−
                (9) 

The stagnant thermal conductivities as followed is 
derived by the results of Zehner [24] 

2/30.75
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Where the force between the spheres [25] 
72.307 7.8716depthF Z= +  

𝑍𝑑𝑑𝑑𝑑ℎ is the distance from the bottom wall. 
The thermal dispersion coefficient [26] 
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1.1.3 Numerical method 
Computations with 6800 structured grids after grid 

independence test are carried out using Fluent 6.3.2, a 
commercial CFD code. The SIMPLE algorithm is used 
to couple the pressure and velocity. And PRESTO! 
(PREssure Staggering Option) scheme is used for 
pressure discretization and second-order discretization 
scheme is used for advection and energy terms. The 
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convergence criteria are that mass flow rate and the total 
heat transfer flux are possible small. 
1.2 Pore-scale model 
1.2.1 Physical models 

Because of the random structure of the graphite 
spheres packing, it is reasonable to generate a random 
packed bed with the same mean porosity. PFC 3D is a 
commercial software based on DEM (Discrete element 
method), which is able to generate a random packing of 
pebble bed by calculating the interaction forces of 
thousands of spheres until the forces equilibrium are 
reached. According the size of the test, thousands of 
graphite spheres are packed randomly, as shown in Fig. 
2. However, the mesh generation at the point contact is a 
crucial issue when carrying out the simulation with 
conventional CFD methods. One cross section with the 
same mean porosity as the whole packed bed is used for 
the pore-scale simulations to simplify the problem. 
 

       
(a) 3D random packed bed             (b) Cross section  
Figure 2: RANDOM PACKED BED FROM PFC3D 

 
1.2.2 Governing equations 

The natural convection in the packed bed is laminar. 
And discrete ordinates radiation model is used to 
describe the thermal radiation in the packed bed with 
transparent Helium and opaque graphite spheres with 
emissivity 0.8. The governing equations are the default 
equations in Fluent. The top and bottom walls are 
adiabatic. The inner wall is constant heat flux, whereas 
the outer wall is constant temperature according to the 
experimental data. 
1.2.3 Numerical method 

Computations with 231372 unstructured grids after 
grid independence test are carried out using Fluent 6.3.2, 
a commercial CFD code. The SIMPLE algorithm is used 
to couple the pressure and velocity. And PRESTO! 
(PREssure Staggering Option) scheme is used for 
pressure discretization and second-order discretization 
scheme is used for advection and energy terms. The 
convergence criteria are that mass flow rate, the total 
heat transfer flux and radiation heat transfer rate is 
possible small. 
2 Results and discussions 
2.1 Porosity distribution comparison 

The porosity distribution of the generated annular 
packed bed with the porosity 0.41 is shown in Fig. 4. The 
simulation results by PFC 3D are corresponded well with 

the oscillatory correlation [19] about variation in the 
radial direction in the porosity of packed beds. The slight 
difference near the inner wall can be attributed to the fact 
that there are not enough spheres when the porosity of 
the only 45 degrees in the circumferential direction is 
calculated. It can also be said that there appears to be 
very little difference between the variations in the 
porosity near the outer wall. The second graph in Fig.3 
shows that the damped oscillatory behavior of the 
porosity at axial direction is weaker than that of radial 
direction due to the height is larger than the radius.  

  
(a) Radial variation of porosity 

  
(b) Axial variation of porosity 

Figure 3: POROSITY DISTRIBUTION OF RANDOM 
PACKED BED 
 
2.2 Temperature distribution comparison 

With the same heat source (10kW, 30kW), the 
temperature distribution along the radius direction at 
different height of pore-scale simulation and volume-
averaged simulation are compared with the experimental 
data. It shows that the temperatures of pore-scale 
simulations are much higher than the experimental data, 
because graphite spheres are not completely contacted 
and the heat needs to be transferred by the weak natural 
convection and radiation, especially near the inner wall. 
The volume-averaged simulation results are 
corresponded better with the experimental data. It reveals 
that the volume-averaged model built is proper to 
simulate the natural convection, conduction and thermal 
radiation in high temperature packed bed, and is also a 
timesaving simulation method to predict the effective 
thermal conductivities above the temperatures of the 
existed experiments. 
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 (b) Temperature distribution (30kW) 
Figure 4: COMPARISON OF TEMPERATURE 
DISTRIBUTION 
 
2.3 Effective thermal conductivities prediction 
The total effective conductivity in the radial direction of 
the annular packed bed can be calculated from 
 

,
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The effective thermal conductivity dependent of 
temperature can be extracted as 
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When the above equation is used, one sphere 
diameter is selected as the computation cell length to 
decrease temperature fluctuation due to the porosity 
variation near the wall. The effective thermal 
conductivities calculated from volume-averaged model 
and pore-scale model are compared with the 
experimental results in Fig. 5. It shows that the volume-
averaged model predicts the thermal conductivities very 
close to the real value, except that the effective thermal 
conductivity at high temperature is smaller. It’s mainly 
because of the MSUC radiation model is not very 
accurate in the wall region if the curvature of the wall is 
large compared to the sphere diameter. The results of the 
pore-scale model are much smaller because of the 

assumption of the incomplete contact among spheres and 
between spheres and the wall in the 2D packed bed. 
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 Figure 5: COMPARISON OF TEMPERATURE-
DEPENDENT EFFECTIVE THERMAL 
CONDUCTIVITIES 

By the above analysis, the volume-averaged model 
has been validated as the more precise and simpler model 
to predict the effective thermal conductivities of annular 
pebble bed tests with the inner wall is 1600 ℃ and the 
outer wall is 1400 ℃. The inner radius 𝑟𝑖 of the pebble 
bed is 0.5 m, the inner radius 𝑟𝑜 is 2.0 m and the height is 
1.0 m. The total effective thermal conductivity of this 
pebble bed is 45.95 W/mK, and the effective thermal 
conductivities with different high temperature are 
calculated by Eq. 13, as shown in Fig. 6. And it also 
reveals that the radiation effective conductivities play a 
vital role in the heat transfer.  
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 Figure 6: THE EFFECTIVE THERMAL 
CONDUCTIVITES IN ANNULAR PEBBLE BED 
WITH TEMPERATURE 1400 ℃~1600℃ 
 
CONCLUSIONS 

By the comparison of volume-averaged model and 
pore-scale model simulation results with the same 
experimental heat source (10kW, 30kW), the volume-
averaged model is more timesaving and more precise 
than the pore-scale model according to the experimental 
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results. The volume-averaged model has been used to 
predict the effective thermal conductivities of annular 
pebble bed tests with higher temperature, will be very 
important references for thermal hydraulic designs of 
higher temperature gas cooled reactor core. 
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