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Abstract

A modified Rhie-Chow / PISO (Pressure-Implicit with
Splitting of Operators) segregated algorithm is proposed,
which by construction avoids the development of spuri-
ous oscillations in the solution fields for low Mach number
flow in heterogeneous, isotropic porous media. The col-
located variable finite volume based algorithm modifies
the commonly used Rhie-Chow interpolation to maintain
a strong pressure-velocity coupling when large discon-
tinuous implicit momentum sources are present. This
Redistributed Resistivity PISO (rdrPISO) algorithm is
based on a redistribution of the flow resistivity over the
neighboring grid cells to the discontinuity. The proposed
algorithm is successfully verified against published data
for the velocity and pressure for two cases. The robust-
ness of the proposed algorithm is also demonstrated for
high Reynolds number flows and low Darcy numbers, for
which oscillatory free solutions are achieved.
Keywords: Porous, PISO, Rhie-Chow, spurious oscillations,
collocated, segregated, finite volume method, low Mach

1 Introduction

Fluid flow through porous media is fundamental to
many natural and industrial processes, such as ground-
water flows, filtration, and chemical and biomass process-
ing. In order to efficiently simulate these processes and
predict their performance, robust mathematical and nu-
merical models are of high importance. While the equa-
tions governing the flow and heat transfer in porous me-
dia are readily specified using the method of volume av-
eraging [1] in conjunction with suitable closure models, it
often remains challenging to obtain physically acceptable
solutions in the vicinity of fluid-porous interfaces, where
the porosity is discontinuous. Without special care in
the algorithm development, such discontinuity may yield
spurious oscillations in the solution variables. This is es-
pecially true for high Reynolds (Re) number flows and
for low Darcy (Da) number heterogeneous porous media,
for which the jump in flow resistivity and/or porosity is
high. The occurrence of spurious oscillations is partic-
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ularly pronounced when segregated algorithms are ap-
plied, in which the velocity and pressure equations are de-
coupled and an iterative solution process is required. Nu-
merical schemes that avoid spurious oscillations at sharp
interfaces were proposed in [2] and [3] for both struc-
tured and unstructured grids using a collocated variable,
finite volume block-coupled solver, which solves pressure
and velocity simultaneously instead of in a segregated
way as in the PISO algorithm [4]. Their rather complex
schemes, which treat fluid-porous interfaces consistently,
work well for high Re number flows, but require special,
local treatment of the fluid-porous interfaces.

Furthermore, a correction to the Rhie-Chow interpo-
lation for when the fluid is subject to large body forces
was suggested in [5] and a force field discretization rule
for the volume-of-fluid method was suggested in [6] as
remedies for the pressure-velocity decoupling and their
resulting spurious velocities. These correction schemes
may be applied for explicit treatments of the flow resis-
tance source terms occurring in porous media flow. How-
ever, explicit flow resistance source terms impose severe
time-step limitations and implicit implementation of the
flow resistance is therefore preferable.

In contrast to [2] and [3], this work focuses on seg-
regated algorithms for collocated variable finite volume
methods for general porous media flow. A modified Rhie-
Chow / PISO algorithm is proposed, which by construc-
tion avoids the development of spurious oscillations in
the solution fields when large discontinuous implicit mo-
mentum sources are present. The algorithm is based on
a redistribution of the discontinuous flow resistivity over
nearby grid cells, in a similar way as was proposed in
[7] for discontinuous body force fields. In order to not
create time step restrictions for high Re number or low
(Da) number flows, for which the flow-induced resistance
is high, the flow resistance term is treated implicitly. The
proposed algorithm is successfully verified against pub-
lished data for the velocity and pressure fields for the
incompressible, isothermal flow through a porous plug
and for flow parallel to a porous medium. The robust-
ness of the proposed algorithm is also demonstrated for
high Re number flows and for low Da numbers.

The organization of this paper is as follows. In Sec-



tion 2, the governing equations for low Mach number
flow and heat transfer in isotropic, heterogeneous porous
media are introduced, followed by their finite volume dis-
cretization and an analysis of the discretized equations
for large, discontinuous implicit source terms in Section
3. Thereafter, a Redistributed Resistivity PISO (rdr-
PISO) algorithm is put forward in Section 4 followed by
its validation in Section 5 and conclusions in Section 6.

2 Governing equations

Fluid flow and heat transfer in conjugate fluid /porous
domains is governed by the volume-averaged mass, mo-
mentum and energy conservation equations [1]. Follow-
ing the derivations in [1] and the closure modeling in [8]
and [9], the equations governing the flow and heat trans-
fer in isotropic, heterogeneous porous media, constituted
by a fluid phase o and a solid phase (3, can in its closed
general conservation form, assuming local thermal non-
equilibrium between the phases, be written as:

Ft(d(pa)®) + 0i({pa)™(ui)) = 0

O ((pa) ™ (ui)) 4 05(d™ {pa)® (uz) (ui)) =
— 90i(pa)® + 0j(Tij) + &(fi)* — ¢D(u;)

(1)

(2)

(ep,a)® (0e(d{pa)* (Ta)®) + 0i((pa)* (ui)(Ta)*)) =
0i(Ae0:{Ta)®) + hapaas((Ts)” — (Ta)?)
+ 01(P(Pa)®) + (ui)0i(pa)™  (3)

(cp.8)"(p3) 01 ((1 = 9)(T)") = Bi(X50:(T5)")
— hapaas({T)” = (Ta)*)  (4)

where ¢ is the time, p the density, u; the velocity, p the
pressure, and f; a momentum body source. The volume-
averaged rate of strain tensor is (7;;) = (fta)*(9;j(u;) +
9i(u;)) — (3{pa)® — (Ka)®)0i;0k (ur) with y the dynamic
viscosity, d;; the Kronecker delta tensor and x the dilata-
tional viscosity. The operator J; is the temporal partial
derivative and 0; is the partial derivative with respect
to the spatial coordinate i. D = (u)*(K~! + K~1F)
is the isotropic resistivity, ¢ is the porosity, K is the
isotropic permeability and F' = %Kl/ﬂ (uj)|cg is the
non-Darcy resistivity, where cg is the form drag coeffi-
cient. In the energy equations, ¢, ,, is the specific heat,
T,, the temperature, A, is the effective thermal conduc-
tivity for the phase m € {«,8}. The interfacial heat
transfer coefficient is denoted with h.g and aqg is the
specific surface area.

The extrinsic, or superficial, average and the intrinsic
volume average of a property ¢ are according to [1] de-
fined as: (pa) = ¢ [y, YadV and (pa)* = 3= [i, vadV,
respectively, where V is the representative elementary
volume containing both fluid and solid constituents and

V, is the volume occupied by constituent a.

Note that the volume-averaged equations can be used
in both the pure fluid and in the porous region by set-
ting ¢ =1, D = Aj = hap = aap = 0 and Aj, = A4,
where A, is the fluid thermal conductivity, in the pure
fluid region. In the next section the discretization of the
volume-averaged governing equations for the fluid flow in
conjugate fluid/porous domains is presented.

3 Finite volume discretization and derivation of
pressure equation
In order to discretize the governing volume-averaged
equations using a collocated finite-volume method, the
equations must be integrated over a typical control vol-
ume Vp centered about a node P and bounded by N
faces with surface area vector S;; and face centers f.
Applying Gauss divergence theorem, the semi-discretized
form of the volume-averaged mass, momentum and en-
ergy equations for an implicit dominated collocated vari-
able discretization yields:

Vpdi(grpp) + ) _(pui)sSiy =0
f
Vpdi(ppuip) + Y (67 pu;) sui S 5 =
7

- ¢p prsi,f + Z 7ijSj.f + ¢pfipVp
f f

(5)

—¢pDpu; pVp (6)

Vicy, p0i(0pppTe) + > (pui) Ty Sig) =

f
N XD 1Si g + Viheos paas.p(Ts.p — Tp)
f
+ VpOi(dppp) +uip Y prSiy  (7)
f
Vi (epsps) pOr((1 = 6p)Ts,p) = D s 1(0:T5) 1 Si g

7
= Vphag,paas,p(1p,p — Tp)

(8)

Here and below the spatial averaging operators ()¢ and
() and the subscript « for the fluid phase are dropped for
brevity. Note that u; hereinafter refers to the superficial
velocity and the other variables are intrinsic.

In the discretized equations above, some of the prop-
erties and variables are required at the cell centers and
some at the face centers. In a collocated variable rep-
resentation, the properties and variable are all stored in
the cell-centers and need to be interpolated by suitable
interpolation schemes to the face centers. The mass flow
rate in the convective term is found in line with the collo-
cated variable method of Rhie and Chow [10] as described
later. Applying suitable discretization and interpolation



schemes for the terms and variables in (6), dividing them
by Vp and replacing the discretized pressure gradient
with its non-discretized form, the semi-discretized mo-
mentum equation can for the P node be written as:

Apu;p = H; p— ¢p(dip)p (9)
where Ap = ap/Vp, H; p = (1/Vp) >, Gnbliny and ap
and a,p are the finite volume discretization coefficients
for the node P and its neighboring nodes nb, respectively.
Dividing by Ap results in the following equation for the
cell-centered velocity:

Ui, p = Al_lei’p - Al_p1¢p(8ip)P (10)

3.1 Discretized pressure equation and Rbhie-
Chow interpolation

It can be noted that there is no explicit equation for the
pressure in the conservation equations. Thus, a pressure
equation must be derived from the mass and momentum
conservation equations. This can be realized by assuming
that u; ¢ can be expressed in a similar semi-discretiized
form as (10). Multiplying the expression by p, inserting
it into the mass conservation equation (5) and replacing
p in the time derivative with the equation of state:

p=1vp (11)
where 1 is the compressibility, the following pressure
equation emerges:

Vpoi(dpvppp) + Y (pA Hi) Sy =
!

> (pAT ) (0ip)sSiy  (12)
7

after having made the assumption that (pA~'¢0;p); =
(pA™19)£(0;p) ¢ in accordance to the method of Rhie and
Chow [10].

As seen in the derived pressure equation, interpola-
tions from cell-centered values to the face centers are re-
quired for all terms inside the surface summations. The
terms (pA~'H;)s and (pA~'¢)s can be interpolated to
the face centers from the nodes P and nb by linear inter-
polation according to:

Lp=1=7rTp+1rTn (13)

where r = |d; pf|/|d; Pns|, di,ps is the distance vector
between the node P and the face center f, d; pny is the
distance vector between node P and node nb and I' is
the property to interpolate. To avoid pressure-velocity
decoupling for smooth flows, Rhie and Chow [10] sug-
gested to use the directly calculated pressure gradient at
the face, using the neighboring nodes according to:

(14)

where 7n; ; is the face normal vector, instead of inter-
polating the cell-centered pressure gradients to the face.
The mass flux at the faces can then be expressed as:

(pui) £ Sif =
(pPAT Hy) 1 Sir — (pA™'0) s (0ip)£Sir  (15)

where the pressure gradient at the face is directly com-
puted using (14).

3.2 Pressure-velocity decoupling for large dis-
continuities

The Rhie-Chow interpolation and the PISO algorithm
were proposed for pure fluid flows, for which the proper-
ties and field variables are smooth and only slowly vary-
ing due to temperature and density changes. The Rhie-
Chow interpolation as described previously has been
shown to result in pressure-velocity decoupling and spu-
rious pressure and velocity oscillations in the vicinity
of discontinuities in properties, field variables or large
source terms in the governing equations [2, 3, 5, 7].

The main causes of the pressure-velocity decoupling
when solving the porous media flow equations using a
segregated PISO algorithm are:

i The interpolation of (pA~'H;); and (pA~'¢)s to
match to the directly calculated (0;p)¢ in the Rhie-
Chow interpolation in (12).

ii The interpolation of face pressure to balance the dis-
continuous cell-centered flow resistivity in the dis-
cretized momentum equation, (6), in the predictor
step and in (10) in the velocity corrector step of the
PISO algorithm.

4 Modified Rhie-Chow interpolation and the
Redistributed Resistivity PISO algorithm

In this section, a novel modified Rhie-Chow interpola-
tion and Redistributed Resistivity PISO algorithm pre-
serving the pressure-velocity coupling at the interfaces
by construction is proposed. This algorithm addresses
the main causes of the pressure-velocity decoupling men-
tioned previously.

4.1 Modified Rhie-Chow interpolation

To avoid interpolation of the discontinuous ¢ from the
cell-centers to the face centers in the Laplacian term of
the pressure equation (12), the discretized momentum
equation (6), is divided by ¢p. Further division by Vp
and replacement of the discretized pressure gradient with
its non-discretized form, yields:



1 1
— ), i - “Low)ru; 1S =
e i(pPui,p) + T Ef (&7 puj) pui,rSj s
1
—(0; — i, F 9 i,p — Dpu; 1
(Oip)p + T % Tij,pSj.f + fip — Dpuip  (16)

Instead of discretizing Dpu,; p into Ap and H; p, as
was done in (9), Dpu; p is left in its non-discretized
form together with the pressure gradient. The rest of
the terms are discretized according to:

1
Apuip — H; p = —0(ppu; p)

op
1 1
- g 0 S p— ——— ¢S e — fip.
+¢%Vp Ef (pug) pui,p S, ¢ Py Ef Tij 1 S5,¢ — fip
(17)

Note that the reciprocal porosity in the convective term
of (17) has been moved outside of the sum to ensure
consistent treatment of the porosity discontinuity. This
approximation restricts the discontinuity to the interface
only and prevents it to spread to the neighboring cells
when discretizing. The resulting semi-discretized mo-
mentum equation takes the form:

Apu;p+ Dpuip = H; p — (0;p)p- (18)

Dividing it first by Ap and then collecting the velocity
terms, the cell-centered velocity becomes:

Ui, p = BP(AI_DlHi’p - A;l(alp)p) (19)

where Bp = (14+DpAp')~'. Assuming that the face ve-
locity can be expressed similarly to (19) and multiplying
it with p, the mass flux through a face f yields:

(pui)§Si,f = (PBA™ H;) ¢ S; p—

(pBA™'0;p)sSis- (20)

To maintain a strong pressure-velocity coupling at the
discontinuity and to interpolate the discontinuous vari-
ables consistently to the interface in the face mass flux
expression, B is interpolated separately to the faces re-
sulting in the following modified Rhie-Chow interpola-
tion:

(pui)§Si.p = Byl(pA~ Hi) 5 Si g
— (pPA1) £ (8ip) £ Siz]

where By = (1 + Dy(A71);)~1. The terms (pA~ H;)y,
(pA™1)s, Dy and (A™1)s are found using the linear in-
terpolation in (13), and (0;p)y is discretized using (14).
Note that (pA~'9;p)r = (pA~1);(dip)s in accordance
with the approximation by Rhie and Chow [10]. In this
way, the original Rhie-Chow interpolation is used for the
continuous or slowly varying variables, and the main con-
tribution from the large discontinuity is multiplied to it
consistently for both terms in the face flux expression.

(21)

Inserting the modified Rhie-Chow interpolation into the
discretized mass conservation equation (5) and replacing
pp in the time derivative with (11) the following modified
pressure equation is found:

Vpdi(¢ptrpp) + Y By(pA™ Hy)pSiy =
1

> Bi(pATN)(0ip)fSiy  (22)
7

4.2 Flow resistivity redistribution

To avoid the generation of spurious velocity oscilla-
tions in the vicinity of the discontinuity, when solving
the discretized momentum equation, (18) or correcting
the velocity with (19), a balance between the discontin-
uous flow resistance field and the cell-centered pressure
gradient is required. In [2] and [6], special face pres-
sure interpolation schemes were proposed to estimate
the face pressure at porous interfaces consistently. These
schemes require either explicit corrections with the mass
flux or extrapolations of the cell-centered pressure from
each side of the interface. Here, another method is pro-
posed, which conserves the mass and momentum on the
discrete level. In this method, p; is determined by lin-
ear interpolation, (13). Since the pressure gradients in
the two cells neighboring the discontinuity are not bal-
ancing the cell-centered flow resistivity in these cells, the
cell-centered resistances must be modified to balance the
cell-centered pressure gradients calculated from the lin-
early interpolated face pressures.

In order to determine the cells requiring a redistributed
resistivity, a cell indicator function is defined as:

2p [(Ad)sl
mazx () |(Ad)sl,€)

where (A¢); = ¢np — ¢p and e is a small number in
the order of 107'° to avoid division by zero for when
¢ 1(Ad)f| = 0. Qp has the value 1 for cells requir-
ing a redistributed resistivity and 0 otherwise. Another
indicator function 60y is defined as:

__ 1(A®9)]
! maz(|(A(Q2))s],€)

where A(Q¢)f = Qupdns — Qpdp, in order to determine
the faces required for the calculation of the redistributed
flow resistivity in the cells where Q0p = 1. The required
faces for the redistribution of the resistivity are stipu-
lated by the linear interpolation stencil used to compute
(0ip)p. 6 has the value 1 for required faces and 0 other-
wise. The redistributed resistivity D7 is then computed
using inverse distance weighting for the required faces
according to:

Qp
DY =(1-Qp)Dp+ = wibsD 25
P = p)Dp wafef%: f0rDy  (25)

Qp =

(23)

(24)



where wy = 1/|d; ps| and Dy is interpolated to the face
centers by the linear interpolation in (13).
The modified discretized momentum equation with the
redistributed resistivity yields:
1

1
L Oh(prus.p) + = 3 () s 1S5 =
P (ppu ’P)+¢§3Vp - (puj) fui f S, f
1 1
— = pSig+— > TS i.p — Dplu;
VP - pf ’f—'—(bPVP - Tijg, f j7f+fyp p Wi,p
(26)

and the expression for the velocity correction reads:

(Oip)P)

where BI! = (1 + D3 A5Y) L. The face velocity u; s in
the convective term can be discretized by any suitable
scheme and the mass flux (pu;);S; s is calculated from
(21).

Ui, p = BlrpdAlzl(H@P - (27)

4.3 Redistributed Resistivity PISO algorithm

The original PISO algorithm [4] is a non-iterative tech-
nique for the solution of the implicitly discretized time-
dependent general flow equations. The non-iterative so-
lution is accomplished at each time-step through a se-
quential predictor-corrector process by which the differ-
ent dependent variables are updated individually. The
two-stage PISO scheme in [4] takes, while following the
notation in [4], the following form:

1. Momentum predictor step: uj'p, pp, pp, Pp, Dp
and (pw)’}& ¢ from the last time-step are used to
calculate A%, Hl'p(u] p) and D™ in, (26), which is
then solved using (9;p)p = 1/Vp 3_;p}Si s to give
uj p.

2. Momentum corrector step 1: u; p generally does not
satisfy the mass conservation equation [4]. The pres-
sure equation (22) is therefore solved to find an in-
termediate pressure pj. The mass flux is then up-
dated to (pu;)}S;, ¢ using (21). Thereafter, the den-
sity is updated from p} = ¥ppp and the velocity
is corrected to u;p using (27). The fields pp, uip
satisfies the mass conservation equation.

3. Energy predictor step: The equations (7) and (8)
are solved with pg p, AB", \3'p, hivs p, als ps Cp ps
Cp 5.pr P> PPy (pui)3Si g, ui'p to get Tp and T p
4. Momentum corrector step 2: 'The compressibil-
ity is updated to %}, and the pressure equation,
(22), is thereafter solved again using p%, A%, D%,
H}'p(uj’p), to get pp". The mass flux is updated to
(pui)3*Si,s using (21) followed by an update of the
density using pp" = ¥ppp. The velocity is there-

after corrected using (27) to get ;5. The corrected

field variables are then taken over to the next time-
step.

5 Validation

The proposed rdrPISO and the original PISO al-
gorithms described in Sections 4 and 3, respectively,
have been implemented using the OpenFOAM® open
source computational fluid dynamics C++ library (ver-
sion 2.2.0). The porous plug case for flow perpendicular
to a porous region and the Beaver-Joseph problem for
flow parallel to a porous region are considered, in order
to demonstrate the accuracy and robustness of the pro-
posed algorithm. Their respective geometries can be seen
in Fig. 1. The flow is assumed to be incompressible and
isothermal and the porous media isotropic. The fluid and
porous properties, initial and boundary conditions and
computational grids are specified according to the setups
in [2]. U is the average velocity in the pure fluid portion
of the channel at fully developed conditions, Da = K/h?
with h as the channel height and Re = @ The time
derivative is discretized by a second-order implicit back-
ward differencing scheme and the convective term by the
second-order linear upwind differencing (LUD) scheme
[11]. The discretized momentum equations for each co-
ordinate direction are solved using a smooth solver with a
Gauss-Seidel smoother down to the tolerance 107! and
the pressure equations are solved with a Preconditioned
Conjugate Gradient (PCG) solver with Faster Diagonal
Incomplete-Cholesky (FDIC) preconditioner down to the
tolerance 10712,

@ vy
A
“ ]
> X
3h 5h 8h
(b) vy
A
2h
h
> X
8h

Figure 1: Geometries for (a) porous plug and (b) Beaver-
Joseph cases.

It can be seen in Fig. 2 that an oscillatory free so-
lution, in agreement with the reference data [2], is ob-
tained with the proposed rdrPISO algorithm with modi-
fied Rhie-Chow interpolation, whereas if a original Rhie-
Chow / PISO scheme is used, spurious oscillations of the
velocity in the vicinity of the porous interface occur, al-
ready at a low Da and Re number flow.

The rdrPISO and the original PISO algorithms per-
form equally well (nearly overlapping), compared to the
reference data [2], for the Beaver-Joseph case, see Fig. 3,
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Figure 2: Centerline velocity for porous plug problem for
Re =1 and Da = 1073.

for both Da numbers tested. This is due to the fact that
the pressure gradient over the porous interface is close
to zero, leading to a negligible flow over the discontinu-
ous interface, and a trivial pressure-velocity coupling as
a result.

15
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051

Figure 3: Fully developed velocity profiles for the Beaver-
Joseph problem for Re = 1 and Da = 1072 and Da =
1073,

In order to demonstrate the robustness of the proposed
rdrPISO algorithm, simulations of the flow at both high
Re numbers and low Da numbers were carried out. It
can be seen in Fig. 4 that the rdrPISO algorithm gen-
erates oscillatory free solutions for all Re and Da num-
bers tested. This demonstrates that that the rdrPISO
algorithm is robust for a wide range of flow conditions
and porous media applications. Ongoing work focuses on
further validation of the proposed algorithm for density
varying flow.

6 Conclusions

A Redistributed Resistivity PISO (rdrPISO) algorithm
was proposed for low Mach number flow and heat transfer
in heterogeneous, isotropic porous media. The algorithm
is based on a modified Rhie-Chow interpolation and a re-
distribution of the flow resistivity over the neighboring
cells of the discontinuity. The algorithm was validated
to literature data for the incompressible and isothermal

1451
1.4f
1.35¢

1.3F
2

> Re =10
2 125

> - --Re=10°
12f
1.15¢
11t
1.05f

1 ‘
0 1 2

Figure 4: Centerline velocity for porous plug problem for
Re € {102,10%}, and Da € {1073,1077}.

flow parallel and perpendicular to a porous region and
was found to agree well with the reference velocity and
pressure data for both cases. It was also compared to
an original PISO algorithm, which was shown to gener-
ate undesired pressure-velocity decoupling in the vicin-
ity of the discontinuity, whereas the rdrPISO algorithm
generated smooth, non-oscillatory results. Moreover, the
robustness of the algorithm was demonstrated for high
Re flows up to Re = 10% and for Da numbers as low as
Da =10"".
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