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Modi�ed Rhie-Chow/PISO Algorithm for Colloated Variable Finite Volume PorousMedia Flow SolversM. Nordlund∗1, A.K. Kuzaj1,2, M. Stani2, E.M.A. Frederix2, and B.J. Geurts2,31Philip Morris International R&D, Philip Morris Produts S.A., Quai Jeanrenaud 5, 2000 Neuhatel, Switzerland2Multisale Modeling and Simulation, Faulty EEMCS, J.M. Burgers Center, University of Twente, P.O. Box 217,7500 AE Enshede, The Netherlands3Anisotropi Turbulene, Fluid Dynamis Laboratory, Faulty of Applied Physis, Eindhoven University ofTehnology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsAbstratA modi�ed Rhie-Chow / PISO (Pressure-Impliit withSplitting of Operators) segregated algorithm is proposed,whih by onstrution avoids the development of spuri-ous osillations in the solution �elds for lowMah number�ow in heterogeneous, isotropi porous media. The ol-loated variable �nite volume based algorithm modi�esthe ommonly used Rhie-Chow interpolation to maintaina strong pressure-veloity oupling when large dison-tinuous impliit momentum soures are present. ThisRedistributed Resistivity PISO (rdrPISO) algorithm isbased on a redistribution of the �ow resistivity over theneighboring grid ells to the disontinuity. The proposedalgorithm is suessfully veri�ed against published datafor the veloity and pressure for two ases. The robust-ness of the proposed algorithm is also demonstrated forhigh Reynolds number �ows and low Dary numbers, forwhih osillatory free solutions are ahieved.Keywords: Porous, PISO, Rhie-Chow, spurious osillations,olloated, segregated, �nite volume method, low Mah1 IntrodutionFluid �ow through porous media is fundamental tomany natural and industrial proesses, suh as ground-water �ows, �ltration, and hemial and biomass proess-ing. In order to e�iently simulate these proesses andpredit their performane, robust mathematial and nu-merial models are of high importane. While the equa-tions governing the �ow and heat transfer in porous me-dia are readily spei�ed using the method of volume av-eraging [1℄ in onjuntion with suitable losure models, itoften remains hallenging to obtain physially aeptablesolutions in the viinity of �uid-porous interfaes, wherethe porosity is disontinuous. Without speial are inthe algorithm development, suh disontinuity may yieldspurious osillations in the solution variables. This is es-peially true for high Reynolds (Re) number �ows andfor low Dary (Da) number heterogeneous porous media,for whih the jump in �ow resistivity and/or porosity ishigh. The ourrene of spurious osillations is parti-
∗markus.nordlund�pmi.om

ularly pronouned when segregated algorithms are ap-plied, in whih the veloity and pressure equations are de-oupled and an iterative solution proess is required. Nu-merial shemes that avoid spurious osillations at sharpinterfaes were proposed in [2℄ and [3℄ for both stru-tured and unstrutured grids using a olloated variable,�nite volume blok-oupled solver, whih solves pressureand veloity simultaneously instead of in a segregatedway as in the PISO algorithm [4℄. Their rather omplexshemes, whih treat �uid-porous interfaes onsistently,work well for high Re number �ows, but require speial,loal treatment of the �uid-porous interfaes.Furthermore, a orretion to the Rhie-Chow interpo-lation for when the �uid is subjet to large body foreswas suggested in [5℄ and a fore �eld disretization rulefor the volume-of-�uid method was suggested in [6℄ asremedies for the pressure-veloity deoupling and theirresulting spurious veloities. These orretion shemesmay be applied for expliit treatments of the �ow resis-tane soure terms ourring in porous media �ow. How-ever, expliit �ow resistane soure terms impose severetime-step limitations and impliit implementation of the�ow resistane is therefore preferable.In ontrast to [2℄ and [3℄, this work fouses on seg-regated algorithms for olloated variable �nite volumemethods for general porous media �ow. A modi�ed Rhie-Chow / PISO algorithm is proposed, whih by onstru-tion avoids the development of spurious osillations inthe solution �elds when large disontinuous impliit mo-mentum soures are present. The algorithm is based ona redistribution of the disontinuous �ow resistivity overnearby grid ells, in a similar way as was proposed in[7℄ for disontinuous body fore �elds. In order to notreate time step restritions for high Re number or low(Da) number �ows, for whih the �ow-indued resistaneis high, the �ow resistane term is treated impliitly. Theproposed algorithm is suessfully veri�ed against pub-lished data for the veloity and pressure �elds for theinompressible, isothermal �ow through a porous plugand for �ow parallel to a porous medium. The robust-ness of the proposed algorithm is also demonstrated forhigh Re number �ows and for low Da numbers.The organization of this paper is as follows. In Se-1



tion 2, the governing equations for low Mah number�ow and heat transfer in isotropi, heterogeneous porousmedia are introdued, followed by their �nite volume dis-retization and an analysis of the disretized equationsfor large, disontinuous impliit soure terms in Setion3. Thereafter, a Redistributed Resistivity PISO (rdr-PISO) algorithm is put forward in Setion 4 followed byits validation in Setion 5 and onlusions in Setion 6.2 Governing equationsFluid �ow and heat transfer in onjugate �uid/porousdomains is governed by the volume-averaged mass, mo-mentum and energy onservation equations [1℄. Follow-ing the derivations in [1℄ and the losure modeling in [8℄and [9℄, the equations governing the �ow and heat trans-fer in isotropi, heterogeneous porous media, onstitutedby a �uid phase α and a solid phase β, an in its losedgeneral onservation form, assuming loal thermal non-equilibrium between the phases, be written as:
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Tm the temperature, λe
m is the e�etive thermal ondu-tivity for the phase m ∈ {α, β}. The interfaial heattransfer oe�ient is denoted with hαβ and aαβ is thespei� surfae area.The extrinsi, or super�ial, average and the intrinsivolume average of a property ϕ are aording to [1℄ de-�ned as: 〈ϕα〉 = 1
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Vα is the volume oupied by onstituent α.Note that the volume-averaged equations an be usedin both the pure �uid and in the porous region by set-ting φ = 1, D = λe
β = hαβ = aαβ = 0 and λe

α = λα,where λα is the �uid thermal ondutivity, in the pure�uid region. In the next setion the disretization of thevolume-averaged governing equations for the �uid �ow inonjugate �uid/porous domains is presented.3 Finite volume disretization and derivation ofpressure equationIn order to disretize the governing volume-averagedequations using a olloated �nite-volume method, theequations must be integrated over a typial ontrol vol-ume VP entered about a node P and bounded by Nfaes with surfae area vetor Si,f and fae enters f .Applying Gauss divergene theorem, the semi-disretizedform of the volume-averaged mass, momentum and en-ergy equations for an impliit dominated olloated vari-able disretization yields:
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〈〉 and the subsript α for the �uid phase are dropped forbrevity. Note that ui hereinafter refers to the super�ialveloity and the other variables are intrinsi.In the disretized equations above, some of the prop-erties and variables are required at the ell enters andsome at the fae enters. In a olloated variable rep-resentation, the properties and variable are all stored inthe ell-enters and need to be interpolated by suitableinterpolation shemes to the fae enters. The mass �owrate in the onvetive term is found in line with the ollo-ated variable method of Rhie and Chow [10℄ as desribedlater. Applying suitable disretization and interpolation2



shemes for the terms and variables in (6), dividing themby VP and replaing the disretized pressure gradientwith its non-disretized form, the semi-disretized mo-mentum equation an for the P node be written as:
APui,P = Hi,P − φP (∂ip)P (9)where AP = aP /VP , Hi,P = (1/VP )

∑

nb anbui,nb and aPand anb are the �nite volume disretization oe�ientsfor the node P and its neighboring nodes nb, respetively.Dividing by AP results in the following equation for theell-entered veloity:
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P φP (∂ip)P (10)3.1 Disretized pressure equation and Rhie-Chow interpolationIt an be noted that there is no expliit equation for thepressure in the onservation equations. Thus, a pressureequation must be derived from the mass and momentumonservation equations. This an be realized by assumingthat ui,f an be expressed in a similar semi-disretiizedform as (10). Multiplying the expression by ρ, insertingit into the mass onservation equation (5) and replaing
ρ in the time derivative with the equation of state:

ρ = ψp (11)where ψ is the ompressibility, the following pressureequation emerges:
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(ρA−1φ)f (∂ip)f in aordane to the method of Rhie andChow [10℄.As seen in the derived pressure equation, interpola-tions from ell-entered values to the fae enters are re-quired for all terms inside the surfae summations. Theterms (ρA−1Hi)f and (ρA−1φ)f an be interpolated tothe fae enters from the nodes P and nb by linear inter-polation aording to:

Γf = (1 − r)ΓP + rΓnb (13)where r = |di,Pf |/|dj,Pnb|, di,Pf is the distane vetorbetween the node P and the fae enter f , dj,Pnb is thedistane vetor between node P and node nb and Γ isthe property to interpolate. To avoid pressure-veloitydeoupling for smooth �ows, Rhie and Chow [10℄ sug-gested to use the diretly alulated pressure gradient atthe fae, using the neighboring nodes aording to:
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|dj,Pnb|
(14)

where n̂i,f is the fae normal vetor, instead of inter-polating the ell-entered pressure gradients to the fae.The mass �ux at the faes an then be expressed as:
(ρui)fSi,f =

(ρA−1Hi)fSi,f − (ρA−1φ)f (∂ip)fSi,f (15)where the pressure gradient at the fae is diretly om-puted using (14).3.2 Pressure-veloity deoupling for large dis-ontinuitiesThe Rhie-Chow interpolation and the PISO algorithmwere proposed for pure �uid �ows, for whih the proper-ties and �eld variables are smooth and only slowly vary-ing due to temperature and density hanges. The Rhie-Chow interpolation as desribed previously has beenshown to result in pressure-veloity deoupling and spu-rious pressure and veloity osillations in the viinityof disontinuities in properties, �eld variables or largesoure terms in the governing equations [2, 3, 5, 7℄.The main auses of the pressure-veloity deouplingwhen solving the porous media �ow equations using asegregated PISO algorithm are:i The interpolation of (ρA−1Hi)f and (ρA−1φ)f tomath to the diretly alulated (∂ip)f in the Rhie-Chow interpolation in (12).ii The interpolation of fae pressure to balane the dis-ontinuous ell-entered �ow resistivity in the dis-retized momentum equation, (6), in the preditorstep and in (10) in the veloity orretor step of thePISO algorithm.4 Modi�ed Rhie-Chow interpolation and theRedistributed Resistivity PISO algorithmIn this setion, a novel modi�ed Rhie-Chow interpola-tion and Redistributed Resistivity PISO algorithm pre-serving the pressure-veloity oupling at the interfaesby onstrution is proposed. This algorithm addressesthe main auses of the pressure-veloity deoupling men-tioned previously.4.1 Modi�ed Rhie-Chow interpolationTo avoid interpolation of the disontinuous φ from theell-enters to the fae enters in the Laplaian term ofthe pressure equation (12), the disretized momentumequation (6), is divided by φP . Further division by VPand replaement of the disretized pressure gradient withits non-disretized form, yields:3
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(ρBA−1∂ip)fSi,f . (20)To maintain a strong pressure-veloity oupling at thedisontinuity and to interpolate the disontinuous vari-ables onsistently to the interfae in the fae mass �uxexpression, B is interpolated separately to the faes re-sulting in the following modi�ed Rhie-Chow interpola-tion:
(ρui)fSi,f = Bf [(ρA−1Hi)fSi,f

− (ρA−1)f (∂ip)fSi,f ] (21)where Bf = (1 +Df(A−1)f )−1. The terms (ρA−1Hi)f ,
(ρA−1)f , Df and (A−1)f are found using the linear in-terpolation in (13), and (∂ip)f is disretized using (14).Note that (ρA−1∂ip)f = (ρA−1)f (∂ip)f in aordanewith the approximation by Rhie and Chow [10℄. In thisway, the original Rhie-Chow interpolation is used for theontinuous or slowly varying variables, and the main on-tribution from the large disontinuity is multiplied to itonsistently for both terms in the fae �ux expression.

Inserting the modi�ed Rhie-Chow interpolation into thedisretized mass onservation equation (5) and replaing
ρP in the time derivative with (11) the following modi�edpressure equation is found:
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Bf (ρA−1)f (∂ip)fSi,f (22)4.2 Flow resistivity redistributionTo avoid the generation of spurious veloity osilla-tions in the viinity of the disontinuity, when solvingthe disretized momentum equation, (18) or orretingthe veloity with (19), a balane between the disontin-uous �ow resistane �eld and the ell-entered pressuregradient is required. In [2℄ and [6℄, speial fae pres-sure interpolation shemes were proposed to estimatethe fae pressure at porous interfaes onsistently. Theseshemes require either expliit orretions with the mass�ux or extrapolations of the ell-entered pressure fromeah side of the interfae. Here, another method is pro-posed, whih onserves the mass and momentum on thedisrete level. In this method, pf is determined by lin-ear interpolation, (13). Sine the pressure gradients inthe two ells neighboring the disontinuity are not bal-aning the ell-entered �ow resistivity in these ells, theell-entered resistanes must be modi�ed to balane theell-entered pressure gradients alulated from the lin-early interpolated fae pressures.In order to determine the ells requiring a redistributedresistivity, a ell indiator funtion is de�ned as:
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where ωf = 1/|di,Pf | and Df is interpolated to the faeenters by the linear interpolation in (13).The modi�ed disretized momentum equation with theredistributed resistivity yields:
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P )−1. The fae veloity ui,f inthe onvetive term an be disretized by any suitablesheme and the mass �ux (ρui)fSi,f is alulated from(21).4.3 Redistributed Resistivity PISO algorithmThe original PISO algorithm [4℄ is a non-iterative teh-nique for the solution of the impliitly disretized time-dependent general �ow equations. The non-iterative so-lution is aomplished at eah time-step through a se-quential preditor-orretor proess by whih the di�er-ent dependent variables are updated individually. Thetwo-stage PISO sheme in [4℄ takes, while following thenotation in [4℄, the following form:1. Momentum preditor step: un
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u∗i,P .2. Momentum orretor step 1: u∗i,P generally does notsatisfy the mass onservation equation [4℄. The pres-sure equation (22) is therefore solved to �nd an in-termediate pressure p∗P . The mass �ux is then up-dated to (ρui)
∗
fSi,f using (21). Thereafter, the den-sity is updated from ρ∗P = ψn

P p
∗
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i,P (u∗∗i,P ), to get p∗∗P . The mass �ux is updated to
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∗∗
f Si,f using (21) followed by an update of thedensity using ρ∗∗P = ψ∗
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P . The veloity is there-after orreted using (27) to get u∗∗∗i,P . The orreted

�eld variables are then taken over to the next time-step.5 ValidationThe proposed rdrPISO and the original PISO al-gorithms desribed in Setions 4 and 3, respetively,have been implemented using the OpenFOAMr opensoure omputational �uid dynamis C++ library (ver-sion 2.2.0). The porous plug ase for �ow perpendiularto a porous region and the Beaver-Joseph problem for�ow parallel to a porous region are onsidered, in orderto demonstrate the auray and robustness of the pro-posed algorithm. Their respetive geometries an be seenin Fig. 1. The �ow is assumed to be inompressible andisothermal and the porous media isotropi. The �uid andporous properties, initial and boundary onditions andomputational grids are spei�ed aording to the setupsin [2℄. U is the average veloity in the pure �uid portionof the hannel at fully developed onditions, Da = K/h2with h as the hannel height and Re = ρUh
µ . The timederivative is disretized by a seond-order impliit bak-ward di�erening sheme and the onvetive term by theseond-order linear upwind di�erening (LUD) sheme[11℄. The disretized momentum equations for eah o-ordinate diretion are solved using a smooth solver with aGauss-Seidel smoother down to the tolerane 10−11 andthe pressure equations are solved with a PreonditionedConjugate Gradient (PCG) solver with Faster DiagonalInomplete-Cholesky (FDIC) preonditioner down to thetolerane 10−12.
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Figure 1: Geometries for (a) porous plug and (b) Beaver-Joseph ases.It an be seen in Fig. 2 that an osillatory free so-lution, in agreement with the referene data [2℄, is ob-tained with the proposed rdrPISO algorithm with modi-�ed Rhie-Chow interpolation, whereas if a original Rhie-Chow / PISO sheme is used, spurious osillations of theveloity in the viinity of the porous interfae our, al-ready at a low Da and Re number �ow.The rdrPISO and the original PISO algorithms per-form equally well (nearly overlapping), ompared to thereferene data [2℄, for the Beaver-Joseph ase, see Fig. 3,5
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Figure 2: Centerline veloity for porous plug problem for
Re = 1 and Da = 10−3.for both Da numbers tested. This is due to the fat thatthe pressure gradient over the porous interfae is loseto zero, leading to a negligible �ow over the disontinu-ous interfae, and a trivial pressure-veloity oupling asa result.
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Figure 3: Fully developed veloity pro�les for the Beaver-Joseph problem for Re = 1 and Da = 10−2 and Da =
10−3.In order to demonstrate the robustness of the proposedrdrPISO algorithm, simulations of the �ow at both high
Re numbers and low Da numbers were arried out. Itan be seen in Fig. 4 that the rdrPISO algorithm gen-erates osillatory free solutions for all Re and Da num-bers tested. This demonstrates that that the rdrPISOalgorithm is robust for a wide range of �ow onditionsand porous media appliations. Ongoing work fouses onfurther validation of the proposed algorithm for densityvarying �ow.6 ConlusionsA Redistributed Resistivity PISO (rdrPISO) algorithmwas proposed for lowMah number �ow and heat transferin heterogeneous, isotropi porous media. The algorithmis based on a modi�ed Rhie-Chow interpolation and a re-distribution of the �ow resistivity over the neighboringells of the disontinuity. The algorithm was validatedto literature data for the inompressible and isothermal
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}.�ow parallel and perpendiular to a porous region andwas found to agree well with the referene veloity andpressure data for both ases. It was also ompared toan original PISO algorithm, whih was shown to gener-ate undesired pressure-veloity deoupling in the viin-ity of the disontinuity, whereas the rdrPISO algorithmgenerated smooth, non-osillatory results. Moreover, therobustness of the algorithm was demonstrated for high
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