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Modi�ed Rhie-Chow/PISO Algorithm for Collo
ated Variable Finite Volume PorousMedia Flow SolversM. Nordlund∗1, A.K. Ku
zaj1,2, M. Stani
2, E.M.A. Frederix2, and B.J. Geurts2,31Philip Morris International R&D, Philip Morris Produ
ts S.A., Quai Jeanrenaud 5, 2000 Neu
hatel, Switzerland2Multis
ale Modeling and Simulation, Fa
ulty EEMCS, J.M. Burgers Center, University of Twente, P.O. Box 217,7500 AE Ens
hede, The Netherlands3Anisotropi
 Turbulen
e, Fluid Dynami
s Laboratory, Fa
ulty of Applied Physi
s, Eindhoven University ofTe
hnology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsAbstra
tA modi�ed Rhie-Chow / PISO (Pressure-Impli
it withSplitting of Operators) segregated algorithm is proposed,whi
h by 
onstru
tion avoids the development of spuri-ous os
illations in the solution �elds for lowMa
h number�ow in heterogeneous, isotropi
 porous media. The 
ol-lo
ated variable �nite volume based algorithm modi�esthe 
ommonly used Rhie-Chow interpolation to maintaina strong pressure-velo
ity 
oupling when large dis
on-tinuous impli
it momentum sour
es are present. ThisRedistributed Resistivity PISO (rdrPISO) algorithm isbased on a redistribution of the �ow resistivity over theneighboring grid 
ells to the dis
ontinuity. The proposedalgorithm is su

essfully veri�ed against published datafor the velo
ity and pressure for two 
ases. The robust-ness of the proposed algorithm is also demonstrated forhigh Reynolds number �ows and low Dar
y numbers, forwhi
h os
illatory free solutions are a
hieved.Keywords: Porous, PISO, Rhie-Chow, spurious os
illations,
ollo
ated, segregated, �nite volume method, low Ma
h1 Introdu
tionFluid �ow through porous media is fundamental tomany natural and industrial pro
esses, su
h as ground-water �ows, �ltration, and 
hemi
al and biomass pro
ess-ing. In order to e�
iently simulate these pro
esses andpredi
t their performan
e, robust mathemati
al and nu-meri
al models are of high importan
e. While the equa-tions governing the �ow and heat transfer in porous me-dia are readily spe
i�ed using the method of volume av-eraging [1℄ in 
onjun
tion with suitable 
losure models, itoften remains 
hallenging to obtain physi
ally a

eptablesolutions in the vi
inity of �uid-porous interfa
es, wherethe porosity is dis
ontinuous. Without spe
ial 
are inthe algorithm development, su
h dis
ontinuity may yieldspurious os
illations in the solution variables. This is es-pe
ially true for high Reynolds (Re) number �ows andfor low Dar
y (Da) number heterogeneous porous media,for whi
h the jump in �ow resistivity and/or porosity ishigh. The o

urren
e of spurious os
illations is parti
-
∗markus.nordlund�pmi.
om

ularly pronoun
ed when segregated algorithms are ap-plied, in whi
h the velo
ity and pressure equations are de-
oupled and an iterative solution pro
ess is required. Nu-meri
al s
hemes that avoid spurious os
illations at sharpinterfa
es were proposed in [2℄ and [3℄ for both stru
-tured and unstru
tured grids using a 
ollo
ated variable,�nite volume blo
k-
oupled solver, whi
h solves pressureand velo
ity simultaneously instead of in a segregatedway as in the PISO algorithm [4℄. Their rather 
omplexs
hemes, whi
h treat �uid-porous interfa
es 
onsistently,work well for high Re number �ows, but require spe
ial,lo
al treatment of the �uid-porous interfa
es.Furthermore, a 
orre
tion to the Rhie-Chow interpo-lation for when the �uid is subje
t to large body for
eswas suggested in [5℄ and a for
e �eld dis
retization rulefor the volume-of-�uid method was suggested in [6℄ asremedies for the pressure-velo
ity de
oupling and theirresulting spurious velo
ities. These 
orre
tion s
hemesmay be applied for expli
it treatments of the �ow resis-tan
e sour
e terms o

urring in porous media �ow. How-ever, expli
it �ow resistan
e sour
e terms impose severetime-step limitations and impli
it implementation of the�ow resistan
e is therefore preferable.In 
ontrast to [2℄ and [3℄, this work fo
uses on seg-regated algorithms for 
ollo
ated variable �nite volumemethods for general porous media �ow. A modi�ed Rhie-Chow / PISO algorithm is proposed, whi
h by 
onstru
-tion avoids the development of spurious os
illations inthe solution �elds when large dis
ontinuous impli
it mo-mentum sour
es are present. The algorithm is based ona redistribution of the dis
ontinuous �ow resistivity overnearby grid 
ells, in a similar way as was proposed in[7℄ for dis
ontinuous body for
e �elds. In order to not
reate time step restri
tions for high Re number or low(Da) number �ows, for whi
h the �ow-indu
ed resistan
eis high, the �ow resistan
e term is treated impli
itly. Theproposed algorithm is su

essfully veri�ed against pub-lished data for the velo
ity and pressure �elds for thein
ompressible, isothermal �ow through a porous plugand for �ow parallel to a porous medium. The robust-ness of the proposed algorithm is also demonstrated forhigh Re number �ows and for low Da numbers.The organization of this paper is as follows. In Se
-1



tion 2, the governing equations for low Ma
h number�ow and heat transfer in isotropi
, heterogeneous porousmedia are introdu
ed, followed by their �nite volume dis-
retization and an analysis of the dis
retized equationsfor large, dis
ontinuous impli
it sour
e terms in Se
tion3. Thereafter, a Redistributed Resistivity PISO (rdr-PISO) algorithm is put forward in Se
tion 4 followed byits validation in Se
tion 5 and 
on
lusions in Se
tion 6.2 Governing equationsFluid �ow and heat transfer in 
onjugate �uid/porousdomains is governed by the volume-averaged mass, mo-mentum and energy 
onservation equations [1℄. Follow-ing the derivations in [1℄ and the 
losure modeling in [8℄and [9℄, the equations governing the �ow and heat trans-fer in isotropi
, heterogeneous porous media, 
onstitutedby a �uid phase α and a solid phase β, 
an in its 
losedgeneral 
onservation form, assuming lo
al thermal non-equilibrium between the phases, be written as:
∂t(φ〈ρα〉

α) + ∂i(〈ρα〉
α〈ui〉) = 0 (1)

∂t(〈ρα〉
α〈ui〉) + ∂j(φ

−1〈ρα〉
α〈uj〉〈ui〉) =

− φ∂i〈pα〉
α + ∂j〈τij〉 + φ〈fi〉

α − φD〈ui〉 (2)
〈cp,α〉

α (∂t(φ〈ρα〉
α〈Tα〉

α) + ∂i(〈ρα〉
α〈ui〉〈Tα〉

α)) =

∂i(λ
e
α∂i〈Tα〉

α) + hαβaαβ(〈Tβ〉
β − 〈Tα〉

α)

+ ∂t(φ〈pα〉
α) + 〈ui〉∂i〈pα〉

α (3)
〈cp,β〉

β〈ρβ〉
β∂t((1 − φ)〈Tβ〉

β) = ∂i(λ
e
β∂i〈Tβ〉

β)

− hαβaαβ(〈Tβ〉
β − 〈Tα〉

α) (4)where t is the time, ρ the density, ui the velo
ity, p thepressure, and fi a momentum body sour
e. The volume-averaged rate of strain tensor is 〈τij〉 = 〈µα〉
α(∂j〈ui〉 +

∂i〈uj〉)− (2

3
〈µα〉

α −〈κα〉
α)δij∂k〈uk〉 with µ the dynami
vis
osity, δij the Krone
ker delta tensor and κ the dilata-tional vis
osity. The operator ∂t is the temporal partialderivative and ∂i is the partial derivative with respe
tto the spatial 
oordinate i. D = 〈µα〉

α(K−1 + K−1F )is the isotropi
 resistivity, φ is the porosity, K is theisotropi
 permeability and F = 〈ρα〉α

〈µα〉α
K1/2|〈uj〉|cE is thenon-Dar
y resistivity, where cE is the form drag 
oe�-
ient. In the energy equations, cp,m is the spe
i�
 heat,

Tm the temperature, λe
m is the e�e
tive thermal 
ondu
-tivity for the phase m ∈ {α, β}. The interfa
ial heattransfer 
oe�
ient is denoted with hαβ and aαβ is thespe
i�
 surfa
e area.The extrinsi
, or super�
ial, average and the intrinsi
volume average of a property ϕ are a

ording to [1℄ de-�ned as: 〈ϕα〉 = 1

V

∫

Vα

ϕαdV and 〈ϕα〉
α = 1

Vα

∫

Vα

ϕαdV ,respe
tively, where V is the representative elementaryvolume 
ontaining both �uid and solid 
onstituents and

Vα is the volume o

upied by 
onstituent α.Note that the volume-averaged equations 
an be usedin both the pure �uid and in the porous region by set-ting φ = 1, D = λe
β = hαβ = aαβ = 0 and λe

α = λα,where λα is the �uid thermal 
ondu
tivity, in the pure�uid region. In the next se
tion the dis
retization of thevolume-averaged governing equations for the �uid �ow in
onjugate �uid/porous domains is presented.3 Finite volume dis
retization and derivation ofpressure equationIn order to dis
retize the governing volume-averagedequations using a 
ollo
ated �nite-volume method, theequations must be integrated over a typi
al 
ontrol vol-ume VP 
entered about a node P and bounded by Nfa
es with surfa
e area ve
tor Si,f and fa
e 
enters f .Applying Gauss divergen
e theorem, the semi-dis
retizedform of the volume-averaged mass, momentum and en-ergy equations for an impli
it dominated 
ollo
ated vari-able dis
retization yields:
VP ∂t(φP ρP ) +

∑

f

(ρui)fSi,f = 0 (5)
VP∂t(ρPui,P ) +

∑

f

(φ−1ρuj)fui,fSj,f =

− φP

∑

f

pfSi,f +
∑

f

τijSj,f + φP fi,PVP

− φPDPui,PVP (6)
VP cp,P [∂t(φP ρPTP ) +

∑

f

(ρui)fTfSi,f ] =

∑

f

λe
f (∂iT )fSi,f + VPhα,β,Paαβ,P (Tβ,P − TP )

+ VP ∂t(φP pP ) + ui,P

∑

f

pfSi,f (7)
VP (cp,βρβ)P ∂t((1 − φP )Tβ,P ) =

∑

f

λe
β,f(∂iTβ)fSi,f

− VPhαβ,Paαβ,P (Tβ,P − TP ) (8)Here and below the spatial averaging operators 〈〉α and
〈〉 and the subs
ript α for the �uid phase are dropped forbrevity. Note that ui hereinafter refers to the super�
ialvelo
ity and the other variables are intrinsi
.In the dis
retized equations above, some of the prop-erties and variables are required at the 
ell 
enters andsome at the fa
e 
enters. In a 
ollo
ated variable rep-resentation, the properties and variable are all stored inthe 
ell-
enters and need to be interpolated by suitableinterpolation s
hemes to the fa
e 
enters. The mass �owrate in the 
onve
tive term is found in line with the 
ollo-
ated variable method of Rhie and Chow [10℄ as des
ribedlater. Applying suitable dis
retization and interpolation2



s
hemes for the terms and variables in (6), dividing themby VP and repla
ing the dis
retized pressure gradientwith its non-dis
retized form, the semi-dis
retized mo-mentum equation 
an for the P node be written as:
APui,P = Hi,P − φP (∂ip)P (9)where AP = aP /VP , Hi,P = (1/VP )

∑

nb anbui,nb and aPand anb are the �nite volume dis
retization 
oe�
ientsfor the node P and its neighboring nodes nb, respe
tively.Dividing by AP results in the following equation for the
ell-
entered velo
ity:
ui,P = A−1

P Hi,P −A−1

P φP (∂ip)P (10)3.1 Dis
retized pressure equation and Rhie-Chow interpolationIt 
an be noted that there is no expli
it equation for thepressure in the 
onservation equations. Thus, a pressureequation must be derived from the mass and momentum
onservation equations. This 
an be realized by assumingthat ui,f 
an be expressed in a similar semi-dis
retiizedform as (10). Multiplying the expression by ρ, insertingit into the mass 
onservation equation (5) and repla
ing
ρ in the time derivative with the equation of state:

ρ = ψp (11)where ψ is the 
ompressibility, the following pressureequation emerges:
VP ∂t(φPψP pP ) +

∑

f

(ρA−1Hi)fSi,f =

∑

f

(ρA−1φ)f (∂ip)fSi,f (12)after having made the assumption that (ρA−1φ∂ip)f =
(ρA−1φ)f (∂ip)f in a

ordan
e to the method of Rhie andChow [10℄.As seen in the derived pressure equation, interpola-tions from 
ell-
entered values to the fa
e 
enters are re-quired for all terms inside the surfa
e summations. Theterms (ρA−1Hi)f and (ρA−1φ)f 
an be interpolated tothe fa
e 
enters from the nodes P and nb by linear inter-polation a

ording to:

Γf = (1 − r)ΓP + rΓnb (13)where r = |di,Pf |/|dj,Pnb|, di,Pf is the distan
e ve
torbetween the node P and the fa
e 
enter f , dj,Pnb is thedistan
e ve
tor between node P and node nb and Γ isthe property to interpolate. To avoid pressure-velo
ityde
oupling for smooth �ows, Rhie and Chow [10℄ sug-gested to use the dire
tly 
al
ulated pressure gradient atthe fa
e, using the neighboring nodes a

ording to:
(∂ip)f = n̂i,f

pnb − pP

|dj,Pnb|
(14)

where n̂i,f is the fa
e normal ve
tor, instead of inter-polating the 
ell-
entered pressure gradients to the fa
e.The mass �ux at the fa
es 
an then be expressed as:
(ρui)fSi,f =

(ρA−1Hi)fSi,f − (ρA−1φ)f (∂ip)fSi,f (15)where the pressure gradient at the fa
e is dire
tly 
om-puted using (14).3.2 Pressure-velo
ity de
oupling for large dis-
ontinuitiesThe Rhie-Chow interpolation and the PISO algorithmwere proposed for pure �uid �ows, for whi
h the proper-ties and �eld variables are smooth and only slowly vary-ing due to temperature and density 
hanges. The Rhie-Chow interpolation as des
ribed previously has beenshown to result in pressure-velo
ity de
oupling and spu-rious pressure and velo
ity os
illations in the vi
inityof dis
ontinuities in properties, �eld variables or largesour
e terms in the governing equations [2, 3, 5, 7℄.The main 
auses of the pressure-velo
ity de
ouplingwhen solving the porous media �ow equations using asegregated PISO algorithm are:i The interpolation of (ρA−1Hi)f and (ρA−1φ)f tomat
h to the dire
tly 
al
ulated (∂ip)f in the Rhie-Chow interpolation in (12).ii The interpolation of fa
e pressure to balan
e the dis-
ontinuous 
ell-
entered �ow resistivity in the dis-
retized momentum equation, (6), in the predi
torstep and in (10) in the velo
ity 
orre
tor step of thePISO algorithm.4 Modi�ed Rhie-Chow interpolation and theRedistributed Resistivity PISO algorithmIn this se
tion, a novel modi�ed Rhie-Chow interpola-tion and Redistributed Resistivity PISO algorithm pre-serving the pressure-velo
ity 
oupling at the interfa
esby 
onstru
tion is proposed. This algorithm addressesthe main 
auses of the pressure-velo
ity de
oupling men-tioned previously.4.1 Modi�ed Rhie-Chow interpolationTo avoid interpolation of the dis
ontinuous φ from the
ell-
enters to the fa
e 
enters in the Lapla
ian term ofthe pressure equation (12), the dis
retized momentumequation (6), is divided by φP . Further division by VPand repla
ement of the dis
retized pressure gradient withits non-dis
retized form, yields:3



1

φP
∂t(ρPui,P ) +

1

φPVP

∑

f

(φ−1ρuj)fui,fSj,f =

− (∂ip)P +
1

φPVP

∑

f

τij,fSj,f + fi,P −DPui,P (16)Instead of dis
retizing DPui,P into AP and Hi,P , aswas done in (9), DPui,P is left in its non-dis
retizedform together with the pressure gradient. The rest ofthe terms are dis
retized a

ording to:
APui,P −Hi,P =

1

φP
∂t(ρPui,P )

+
1

φ2

PVP

∑

f

(ρuj)fui,fSj,f −
1

φPVP

∑

f

τij,fSj,f −fi,P .(17)Note that the re
ipro
al porosity in the 
onve
tive termof (17) has been moved outside of the sum to ensure
onsistent treatment of the porosity dis
ontinuity. Thisapproximation restri
ts the dis
ontinuity to the interfa
eonly and prevents it to spread to the neighboring 
ellswhen dis
retizing. The resulting semi-dis
retized mo-mentum equation takes the form:
APui,P +DPui,P = Hi,P − (∂ip)P . (18)Dividing it �rst by AP and then 
olle
ting the velo
ityterms, the 
ell-
entered velo
ity be
omes:
ui,P = BP (A−1

P Hi,P −A−1

P (∂ip)P ) (19)where BP = (1+DPA
−1

P )−1. Assuming that the fa
e ve-lo
ity 
an be expressed similarly to (19) and multiplyingit with ρ, the mass �ux through a fa
e f yields:
(ρui)fSi,f = (ρBA−1Hi)fSi,f−

(ρBA−1∂ip)fSi,f . (20)To maintain a strong pressure-velo
ity 
oupling at thedis
ontinuity and to interpolate the dis
ontinuous vari-ables 
onsistently to the interfa
e in the fa
e mass �uxexpression, B is interpolated separately to the fa
es re-sulting in the following modi�ed Rhie-Chow interpola-tion:
(ρui)fSi,f = Bf [(ρA−1Hi)fSi,f

− (ρA−1)f (∂ip)fSi,f ] (21)where Bf = (1 +Df(A−1)f )−1. The terms (ρA−1Hi)f ,
(ρA−1)f , Df and (A−1)f are found using the linear in-terpolation in (13), and (∂ip)f is dis
retized using (14).Note that (ρA−1∂ip)f = (ρA−1)f (∂ip)f in a

ordan
ewith the approximation by Rhie and Chow [10℄. In thisway, the original Rhie-Chow interpolation is used for the
ontinuous or slowly varying variables, and the main 
on-tribution from the large dis
ontinuity is multiplied to it
onsistently for both terms in the fa
e �ux expression.

Inserting the modi�ed Rhie-Chow interpolation into thedis
retized mass 
onservation equation (5) and repla
ing
ρP in the time derivative with (11) the following modi�edpressure equation is found:
VP∂t(φPψP pP ) +

∑

f

Bf (ρA−1Hi)fSi,f =

∑

f

Bf (ρA−1)f (∂ip)fSi,f (22)4.2 Flow resistivity redistributionTo avoid the generation of spurious velo
ity os
illa-tions in the vi
inity of the dis
ontinuity, when solvingthe dis
retized momentum equation, (18) or 
orre
tingthe velo
ity with (19), a balan
e between the dis
ontin-uous �ow resistan
e �eld and the 
ell-
entered pressuregradient is required. In [2℄ and [6℄, spe
ial fa
e pres-sure interpolation s
hemes were proposed to estimatethe fa
e pressure at porous interfa
es 
onsistently. Theses
hemes require either expli
it 
orre
tions with the mass�ux or extrapolations of the 
ell-
entered pressure fromea
h side of the interfa
e. Here, another method is pro-posed, whi
h 
onserves the mass and momentum on thedis
rete level. In this method, pf is determined by lin-ear interpolation, (13). Sin
e the pressure gradients inthe two 
ells neighboring the dis
ontinuity are not bal-an
ing the 
ell-
entered �ow resistivity in these 
ells, the
ell-
entered resistan
es must be modi�ed to balan
e the
ell-
entered pressure gradients 
al
ulated from the lin-early interpolated fa
e pressures.In order to determine the 
ells requiring a redistributedresistivity, a 
ell indi
ator fun
tion is de�ned as:
ΩP =

∑

f |(∆φ)f |

max(
∑

f |(∆φ)f |, ε)
(23)where (∆φ)f = φnb − φP and ε is a small number inthe order of 10−15 to avoid division by zero for when

∑

f |(∆φ)f | = 0. ΩP has the value 1 for 
ells requir-ing a redistributed resistivity and 0 otherwise. Anotherindi
ator fun
tion θf is de�ned as:
θf =

|(∆(Ωφ))f |

max(|(∆(Ωφ))f |, ε)
(24)where ∆(Ωφ)f = Ωnbφnb −ΩPφP , in order to determinethe fa
es required for the 
al
ulation of the redistributed�ow resistivity in the 
ells where ΩP = 1. The requiredfa
es for the redistribution of the resistivity are stipu-lated by the linear interpolation sten
il used to 
ompute

(∂ip)P . θf has the value 1 for required fa
es and 0 other-wise. The redistributed resistivity Drd
P is then 
omputedusing inverse distan
e weighting for the required fa
esa

ording to:

Drd
P = (1 − ΩP )DP +

ΩP
∑

f ωfθf

∑

f

ωfθfDf (25)4



where ωf = 1/|di,Pf | and Df is interpolated to the fa
e
enters by the linear interpolation in (13).The modi�ed dis
retized momentum equation with theredistributed resistivity yields:
1

φP
∂t(ρPui,P ) +

1

φ2

PVP

∑

f

(ρuj)fui,fSj,f =

−
1

VP

∑

f

pfSi,f +
1

φPVP

∑

f

τij,fSj,f + fi,P −Drd
P ui,P(26)and the expression for the velo
ity 
orre
tion reads:

ui,P = Brd
P A−1

P (Hi,P − (∂ip)P ) (27)where Brd
P = (1 +Drd

P A−1

P )−1. The fa
e velo
ity ui,f inthe 
onve
tive term 
an be dis
retized by any suitables
heme and the mass �ux (ρui)fSi,f is 
al
ulated from(21).4.3 Redistributed Resistivity PISO algorithmThe original PISO algorithm [4℄ is a non-iterative te
h-nique for the solution of the impli
itly dis
retized time-dependent general �ow equations. The non-iterative so-lution is a

omplished at ea
h time-step through a se-quential predi
tor-
orre
tor pro
ess by whi
h the di�er-ent dependent variables are updated individually. Thetwo-stage PISO s
heme in [4℄ takes, while following thenotation in [4℄, the following form:1. Momentum predi
tor step: un
i,P , ρn

P , µn
P , pn

P , Dn
Pand (ρui)

n
fSi,f from the last time-step are used to
al
ulate An

P , Hn
i,P (u∗i,P ) andDrd,n

P in, (26), whi
h isthen solved using (∂ip)P = 1/VP

∑

f p
n
fSi,f to give

u∗i,P .2. Momentum 
orre
tor step 1: u∗i,P generally does notsatisfy the mass 
onservation equation [4℄. The pres-sure equation (22) is therefore solved to �nd an in-termediate pressure p∗P . The mass �ux is then up-dated to (ρui)
∗
fSi,f using (21). Thereafter, the den-sity is updated from ρ∗P = ψn

P p
∗
P and the velo
ityis 
orre
ted to u∗∗i,P using (27). The �elds ρ∗P , u∗∗i,Psatis�es the mass 
onservation equation.3. Energy predi
tor step: The equations (7) and (8)are solved with ρβ,P , λe,n

P , λe,n
β,P , hn

αβ,P , an
αβ,P , cnp,P ,

cnp,β,P , ρ∗P , p∗P , (ρui)
∗
fSi,f , u∗∗i,P to get T ∗

P and T ∗
β,P4. Momentum 
orre
tor step 2: The 
ompressibil-ity is updated to ψ∗

P and the pressure equation,(22), is thereafter solved again using ρ∗P , An
P , Dn

P ,
Hn

i,P (u∗∗i,P ), to get p∗∗P . The mass �ux is updated to
(ρui)

∗∗
f Si,f using (21) followed by an update of thedensity using ρ∗∗P = ψ∗

P p
∗∗
P . The velo
ity is there-after 
orre
ted using (27) to get u∗∗∗i,P . The 
orre
ted

�eld variables are then taken over to the next time-step.5 ValidationThe proposed rdrPISO and the original PISO al-gorithms des
ribed in Se
tions 4 and 3, respe
tively,have been implemented using the OpenFOAMr opensour
e 
omputational �uid dynami
s C++ library (ver-sion 2.2.0). The porous plug 
ase for �ow perpendi
ularto a porous region and the Beaver-Joseph problem for�ow parallel to a porous region are 
onsidered, in orderto demonstrate the a

ura
y and robustness of the pro-posed algorithm. Their respe
tive geometries 
an be seenin Fig. 1. The �ow is assumed to be in
ompressible andisothermal and the porous media isotropi
. The �uid andporous properties, initial and boundary 
onditions and
omputational grids are spe
i�ed a

ording to the setupsin [2℄. U is the average velo
ity in the pure �uid portionof the 
hannel at fully developed 
onditions, Da = K/h2with h as the 
hannel height and Re = ρUh
µ . The timederivative is dis
retized by a se
ond-order impli
it ba
k-ward di�eren
ing s
heme and the 
onve
tive term by these
ond-order linear upwind di�eren
ing (LUD) s
heme[11℄. The dis
retized momentum equations for ea
h 
o-ordinate dire
tion are solved using a smooth solver with aGauss-Seidel smoother down to the toleran
e 10−11 andthe pressure equations are solved with a Pre
onditionedConjugate Gradient (PCG) solver with Faster DiagonalIn
omplete-Cholesky (FDIC) pre
onditioner down to thetoleran
e 10−12.
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Figure 1: Geometries for (a) porous plug and (b) Beaver-Joseph 
ases.It 
an be seen in Fig. 2 that an os
illatory free so-lution, in agreement with the referen
e data [2℄, is ob-tained with the proposed rdrPISO algorithm with modi-�ed Rhie-Chow interpolation, whereas if a original Rhie-Chow / PISO s
heme is used, spurious os
illations of thevelo
ity in the vi
inity of the porous interfa
e o

ur, al-ready at a low Da and Re number �ow.The rdrPISO and the original PISO algorithms per-form equally well (nearly overlapping), 
ompared to thereferen
e data [2℄, for the Beaver-Joseph 
ase, see Fig. 3,5
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Figure 2: Centerline velo
ity for porous plug problem for
Re = 1 and Da = 10−3.for both Da numbers tested. This is due to the fa
t thatthe pressure gradient over the porous interfa
e is 
loseto zero, leading to a negligible �ow over the dis
ontinu-ous interfa
e, and a trivial pressure-velo
ity 
oupling asa result.
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Figure 3: Fully developed velo
ity pro�les for the Beaver-Joseph problem for Re = 1 and Da = 10−2 and Da =
10−3.In order to demonstrate the robustness of the proposedrdrPISO algorithm, simulations of the �ow at both high
Re numbers and low Da numbers were 
arried out. It
an be seen in Fig. 4 that the rdrPISO algorithm gen-erates os
illatory free solutions for all Re and Da num-bers tested. This demonstrates that that the rdrPISOalgorithm is robust for a wide range of �ow 
onditionsand porous media appli
ations. Ongoing work fo
uses onfurther validation of the proposed algorithm for densityvarying �ow.6 Con
lusionsA Redistributed Resistivity PISO (rdrPISO) algorithmwas proposed for lowMa
h number �ow and heat transferin heterogeneous, isotropi
 porous media. The algorithmis based on a modi�ed Rhie-Chow interpolation and a re-distribution of the �ow resistivity over the neighboring
ells of the dis
ontinuity. The algorithm was validatedto literature data for the in
ompressible and isothermal
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Re = 102

Re = 103

Da = 10−3

Da = 10−7Figure 4: Centerline velo
ity for porous plug problem for
Re ∈

{

102, 103
}, and Da ∈

{

10−3, 10−7
}.�ow parallel and perpendi
ular to a porous region andwas found to agree well with the referen
e velo
ity andpressure data for both 
ases. It was also 
ompared toan original PISO algorithm, whi
h was shown to gener-ate undesired pressure-velo
ity de
oupling in the vi
in-ity of the dis
ontinuity, whereas the rdrPISO algorithmgenerated smooth, non-os
illatory results. Moreover, therobustness of the algorithm was demonstrated for high

Re �ows up to Re = 103 and for Da numbers as low as
Da = 10−7.A
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