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ABSTRACT 
 
We model the transport of fluid through porous media in 
terms of fractional diffusion equation (FDE) for the 
pressure ( , )p x t . Potential application could be to shale 
gas recovery in tight porous media. Specifically, we pose 
the time FDE in a finite domain of length L,  

0 ( , ),     0 ,     0tD p Ap f x t x L tα = + ≤ ≤ > ,   
where A is a linear differential operator given by 

A a
x x
∂ ∂ ≡  ∂ ∂ 

, where a κ
µ

= , κ is the permeability  

and µ is the viscosity, ( , )f x t  is a source term. 0 tDα  

is the time-fractional derivative of order ,   0 1α α< ≤ . 
The initial and boundary conditions are, 

( ,0) ( )p x g x= , and (0, )xp t c= ,   ( , ) 0xp L t = . 
The main goal is to study numerically the pressure 
distribution ( , )p x t  in one-dimensional porous 
reservoirs for differentα , and for different cases of 

( , )f x t  and ( )g x .  
  
INTRODUCTION 
 
Fractional calculus methods have the ability to represent 
non-Gaussian statistical processes which leads to so-
called anomalous diffusion regimes in which the mean 
square displacement 2x< >  behaves like 

2   x tα< > ∝ , where 1α <  (sub-diffusion), 1α >  
(super-diffusion), and 1α = is the standard (Gaussian) 
diffusion. Applications of fractional calculus abound in 
many areas of science, from biological systems [1, 8] to 
reservoir studies [17]. 
 
The transport of fluids through porous media is a 
complex process which requires a deep understanding of 
the underlying physics and the geometry of the system 
[6, 7]. Fluid flow through porous media occurs because 

of different physical phenomena, such as diffusion of the 
particles through the pores, advection of some of the 
fluid, and perhaps due to some external forces, like 
gravity. Porous medium with the extremely low 
permeability and porosity exhibits different flow 
conditions, such as viscous flow, slip flow and transition 
flow [21]. We often see a departure from the 
conventional Darcy’s law [9].   
 
Different strategies are applied to understand diffusion in 
porous media [2, 3]. Among them the most realistic 
approaches are the use of random walk processes, 
especially the continuous time random walk (CTRW) 
approach [14, 15]. In CTRW, the mean squared 
displacement of the particles is described by the 
nonlinear power law, that is, 2   x tα< > ∝ , where 
0 1α< ≤ . For 1α = , we recover the conventional 
linear relationship which corresponds to the standard 
diffusion process.  The probability density function 

( , )p x t  which describes the location of the particle at 
the position x at the time t satisfies a time fractional 
diffusion equation, as explained in [12]. 
 
1 Fundamental Ideas of Fractional Calculus 
 
The history of fractional calculus dates back to era of 
Newton and Leibniz, when the question of non-integer 
order derivatives was posed [13]. The problem attracted 
the attention of many researchers and the answer came in 
the form of general definitions of fractional order 
derivatives and integrals by many mathematicians, such 
as, Riemann, Liouville, and Ries. In the recent years, the 
interest in the subject has risen because of its ability to 
explain the history dependent processes. The basic 
definitions of fractional calculus are provided here, for 
more details the readers are referred to [4, 5, 10, 16]. 
 
Riemann-Liouville fractional integral of an absolutely 
integrable function ( )f t  is defined by  
 



 

( ) ( ) ( )0 1
0

1 ( )( ) ,     0,   .
t

t
fI f t d t R

t
α

α

τ τ α
α τ

+
−= > ∈

Γ −∫
 

 
For 1α = , it reduces to ordinary integral and for 

0α = , it becomes identity operator.  
 
Riemann-Liouville fractional derivative of an 
absolutely continuous function ( )f t  is defined by  

( ) ( )0
0

1 ( )( ) ,     0 1.
1

t

t
fD f t d

t t
α

α

τ τ α
α τ

∂
= < <
Γ − ∂ −∫

 
For 1α = , it reduces to ordinary derivative and for 

0α = , it becomes identity operator.  
 
Caputo fractional derivative of a differentiable 
function ( )f t  is defined by  

( ) ( )0

1 ( )( ) ,     0 1.
1

t
C
o t

fD f t d
t

α
α

τ τ α
α τ

′
= < <
Γ − −∫  

 
Grunwald-Letnikov fractional derivative of order 
0 1α< <  of a differentiable function ( )f t  is defined 
by  

[ / ]

0 0

1( ) lim ( ),     0,
t h

GL
o t kh k

D f t f t kh t
h

α α
α ω

→
=

= − ≥∑  

where [t/h] is the integer part of t/h , and 

( 1)k
k k
α α

ω
 

= −  
 

 are the generalized binomial 

coefficients.  
 
Equivalence of Fractional Derivatives: If  ( )f t  is 
continuous and differentiable and ( )f t′  is integrable in 
[0, ]t , then for every 0 1α< < , all fractional 
derivatives exist and coincide [10, 16]. 
 
For numerical approximations, we use Grunwald-
Letnikov derivative in the following form [16, 20]: 
 

[ / ]

0

1( ) ( ) ( ).
t h

GL
o t k

k
D f t f t kh O h

h
α α ν

α ω
=

= − +∑  

The binomial coefficients are approximated by the 
following recursive relation [16, 20], 

0 1
11,     1 .k kk

α α ααω ω ω −
+ = = − 

 
 

The generalized binomial coefficients are also generated 
accurately up to order ν  by different generating 

functions. These generating functions are given in [pod]. 
We use the first order backward difference formula  

( ) ( ), 1 ,z z αω α = −  as the generating function.  
 
 
2 Fractional BTCS Method 
 
In this section, we develop a backward in time and 
centered in space (BTCS) finite difference scheme for 
the equation  
 

0 ( , ),     0 ,     0tD p Ap f x t x L tα = + ≤ ≤ >        (1) 
 
The spatial and temporal variables are discretized by 
placing a uniform grid on the space-time domain, that is, 

jx j x= ∆  and mt m t= ∆ . The numerical 

approximation of the unknown ( , )p x t  at the point 

( , )j mx t  is denoted by m
jP  and it is obtained by 

( , )m m
j j j mP p p x t≡ . The time-fractional derivative 

0 tDα  is replaced by Grunwald-Letnikov derivative and 
the space derivative by central difference formula. We 
obtain the following system of recurrence equations, 
 

( )

( )

1
( 1)

1

1 1 1
1 1 1 1 1 1 1

2

1   ( , )

( )

2

m
m k

k j
k

m m m
j j j j j j j m

j

p T x t
t

a p a a p a p
f

x

α
α ω

+
+ −

=

+ + +
+ + + − − − +

+
∆

− + +
= +

∆

∑
 

 
 where T(x,t) is the truncation error. After rearranging, 
we obtain  

( )

( )

1 1 1
1 1 1 1 1 1

1
1 ( 1)

2

1

                               (2)

m m m
j j j j j j j

m
m m k
j k j

k

a S p a a S p a S p

t f p

α α α

α αω

+ + +
− − − + + +

+
+ + −

=

 − + + + − 

= ∆ −∑
 

where 1, 2, ,j J=  ; 1, 2, ,m M=  , and 

( )
( )22

t
S

x

α

α

∆
=

∆
.  

The initial condition, ( ,0) ( )p x g x= , is discretized as 
1
j jp g= , for all 1, 2, ,j J=  .  

The Neumann boundary conditions are discretized by the 
0th order approximation. 

The NBC (0, )xp t c=  gives 
1

2 1
m mp p c

x

+−
=

∆
 which 

implies 1
1 2 ,m mp p c x+ = + ∆  for all 1, 2, ,m M=  , 



 

and the NBC ( , )xp L t c=  gives 
1

1 0
m m
J Jp p

x

+
−−
=

∆
 

which implies 1
1

m m
J Jp p+

−=  for all 1, 2, ,m M=  .  
 
For 2j = , we have, 

( )

( )

1 1
1 3 2 3 3

1
1 ( 1)

2 1 1 2
2

1 m m

m
m m k

k
k

a a S p a S p

t f a S p p

α α

α α
α ω

+ +

+
+ + −

=

 + + − 

= ∆ + −∑
 

But with 1
1 2 ,m mp p c x+ = + ∆  this becomes 

( )

( ) ( )

1 1
1 3 2 3 3

1
( 1)

2 1 2 2
2

1 m m

m
m m k

k
k

a a S p a S p

t f a S p c x p

α α

α α
α ω

+ +

+
+ −

=

 + + − 

= ∆ + + ∆ −∑
 

For 1j J= − , we get, 

( )

( )

1 1
2 2 2 1

1
1 ( 1)

1 1
2

1m m
J J J J J

m
m m k

J J J k J
k

a S p a a S p

t f a S p p

α α

α α
α ω

+ +
− − − −

+
+ + −

− −
=

 − + + + 

= ∆ + −∑
 

 
and with 1

1,
m m
J Jp p+

−=  this becomes 

( )

( )

1 1
2 2 2 1

1
( 1)

1 1 1
2

1m m
J J J J J

m
m m k

J J J k J
k

a S p a a S p

t f a S p p

α α

α α
α ω

+ +
− − − −

+
+ −

− − −
=

 − + + + 

= ∆ + −∑
 

 
For 3, 4, , 2j J= − , it is same as above 
 
In matrix form it can be written as  

1mQp b+ = , 

Where Q is  ( ) ( )2 2J J− × − matrix whose main 

diagonal entries are ( )21jj j jq a a Sα+= + + , where 

1, 2, , 2j J= − . The entries of the sup-diagonal are 

, 1 2j j jq a Sα+ += −  with 1, 2, , 3,j J= −  and the 

entries of the sub-diagonal are given as , 1j j jq a Sα− = −  

where 2,3, , 2,j J= −   The vector 1mp +   represents 

1 1 1
2 1,...,

Tm m m
Jp p p+ + +
− =    and b is a column vector of 

length J-2, whose entries are 

( ) ( )
1

( 1)
1 2 1 2 2

2

m
m m k

k
k

b t f a S p c x pα α
α ω

+
+ −

=

= ∆ + + ∆ −∑ ,  

( )
1

( 1)
2 1 1 1

2

m
m m k

J J J J k J
k

b t f a S p pα α
α ω

+
+ −

− − − −
=

= ∆ + −∑ ,  

and for 2,3, , 3,j J= −  

( )
1

( 1)

2

m
m k

j j k j
k

b t f pα αω
+

+ −

=

= ∆ −∑ . 

 
3 Stability of the Fractional BTCS Method 
 
We use the discrete von Neumann stability criterion to 
derive the stability condition for the implicit finite 
difference scheme (1). The von Neumann stability 
method is discussed in [19].  Yuste and Acedo [20] 
applied the method to find the stability condition for the 
explicit finite difference scheme of time fractional 
diffusion equation, Sweilam [18] derived the stability 
condition for the explicit finite difference echeme of time 
fractional wave equation by using von Neumann stability 
criterion.  
 
First, we assume a solution (a sub-diffusive mode or 
eigenfunction) with the form m iqj x

j mp eζ ∆= , equation 
(2) gives 
 

1
2

1 ( 1) ( 1)
2

1 4 sin
2

m

m k m k
k

q xS α
α ζ ω ζ

+

+ + − −
=

 ∆ + = −    
∑ . 

The stability of the solution is determined by the 
behavior of mζ , which is a function of t., and assuming 

that 1( ) ( )m mt tζ ξζ+ = , where ξ  is independent of t. 
We obtain  

1
2 2

2
1 4 sin

2

m
k

k
k

q xS α
α ξ ω ξ

+
− +

=

 ∆ + = −    
∑ . 

If | | 1ξ > , the temporal factor goes to infinity and the 
mode is unstable.  Considering the extreme value 

1ξ = − , we obtain the following bound on :Sα  
1

2

1
4 sin ( 1)

2

m
k

k
k

q xS α
α ω

+

=

∆  ≤ − 
 

∑ . 

As m →∞ , we obtain 2

1
2

Sα α−≤ .  

 
5 Truncating Error of the Fractional BTCS 
Method 
 
The truncating error ( , )T x t  of the fractional BTCS 
difference scheme is obtained from equation (2) as 
follows:  



 

( )

( )

1
( 1) ( 1)

1

1 1 1
1 1 1 1 1 1

2

1( , )   

( )

2

m
m k

k j
k

m m m
j j j j j j j

j

T x t p
t

a p a a p a p
f

x

α
α ω

+
+ − −

=

+ + +
+ + + − − −

=
∆

− + +
− +

∆

∑
 

As we have  

( )
( )

1 1 1
1 1 2

2

2m m m
j j j

xx

p p p
p x

x

+ + +
− +− +

= +Ο ∆
∆

, 

and 

( )
( )

1
( 1) ( 1)

0
1

1( , )
m

m k
t k j

k
D p x t p t

t
α α ν

α ω
+

+ − −

=

= +Ο ∆
∆

∑ . 

Thus, we have 

( ) ( )2( , )T x t t xν= Ο ∆ +Ο ∆ , 

where ν  is the accuracy of the temporal order, which 
depends on the choice of the generating function that was 
used to approximate the values of general binomial 
coefficients k

αω . Since we have used the first order 

generating function, therefore 1ν = , and hence the 
truncation error is of the following order, 

( ) ( )2( , )T x t t x= Ο ∆ +Ο ∆ . 

Note that ( , ) 0T x t →  as  , 0t x∆ ∆ → . It is possible 
to obtain higher order accurate in time formulas by using 
the higher order generating functions for the binomial 
coefficients k

αω , but then the stability bound on Sα  
becomes smaller [20].  
 
6 Numerical Solutions  
 
We test the reliability of the numerical scheme by 
presenting the numerical solutions of test examples.  
 

 
Figure1. Numerical solutions of example 1. 

 
 
 

Example 1  
 
Consider the following fractional diffusion equation  

2

2 ,p p
t x

α

α

∂ ∂
=

∂ ∂
       0 1x< < ,   0 1t< < . 

The initial condition is ( ,0) (1 )p x x x= − ,  and the 
boundary conditions are (0, ) (1, ) 1.p t p t= =  We 
obtain the following numerical solutions by using the 
numerical scheme given above. 
 

 
Figure 2. Numerical solutions of example 2. 

 
Example 2  
 
Consider the following fractional diffusion equation  

2

2 ,p p
t x

α

α

∂ ∂
=

∂ ∂
       0 1x< < ,   0 1t< < . 

The initial condition is ( ,0) sin( )p x xπ= ,  and the 
boundary conditions are (0, ) (1, ) 1.p t p t= =  We 
obtain the following numerical solutions by using the 
numerical scheme given above. 
 
Example 3  
 
Consider the following fractional diffusion equation  

2

2 ,p p
t x

α

α

∂ ∂
=

∂ ∂
       x−∞ < < ∞ ,   0 10t< < . 

The initial condition is ( ,0) ( )p x xδ= ,  and the 

boundary conditions are ( , ) 0p x t →  as x →∞ . We 
obtain the following numerical solutions by using the 
numerical scheme given above. 
 
 
 
 
 



 

 
Figure 3. Numerical solutions of example 3. 

 
 
Example 4  
 
Consider the following fractional diffusion equation  

2 2
2

2

2 (1 ) 2( 1),
(3 )

p p x x t t
t x

α α

α α

−∂ ∂ −
= + + +

∂ ∂ Γ −
       

0 1x< < ,   0 1t< < . 
The initial condition is ( ,0) (1 )p x x x= − ,  and the 
boundary conditions are (0, ) (1, ) 1.p t p t= =  We 
obtain the numerical solutions by using the numerical 
scheme given above. Numerical solution is plotted 
together with the exact solution 

2( , ) (1 )( 1)p x t x x t= − + . 
 

 
Figure 4: Numerical solutions of example 4. 

 
7 Conclusions 
 
Fractional differential equations are used to describe 
complex system, such as, anomalous diffusion in porous 
media. In this study, we consider time-fractional 
diffusion equation with the source term to describe 
transport through porous media such as hydrocarbon 
reservoirs and aquafers.  
 

We have developed an implicit finite difference scheme 
based on the Grunwald-Letnikov derivative for finding 
the numerical solutions of the fractional diffusion 
equation. We employ uniform mesh on the space-time 
domain. The stability of numerical scheme is established 
by using von-Neumann stability criterion. The stability 
condition is obtained and which is numerically tested by 
three examples. The truncation error is found which 
shows that the above numerical scheme is first order 
accurate in time and second order accurate in space. 
Although the higher order accuracy in time can be 
obtained but that narrows the stability bound.  
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