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Abstract:The effects of variable porosity and variable thermal conductivity of the medium and also the emission, absorption 
and scattering of radiation are studied in this paper. The comparative study has been made for three different situations, 
namely a) variable porosity   b) constant porosity and c) absence of porous medium.In carrying out the solution, the 
momentum and energy equations are coupled and they are solved simultaneously by Runge-Kutta Gill method in conjunction 
with Newton-Raphson iterative scheme. The results of the analyses show that, in the cases of variable porosity and absence of 
porous medium the velocity profiles possess very small curvature at the wall, whereas, in the case of constant porosity 
situation the velocity profile is almost zero upto a certain distance and then increases. Nevertheless, it reaches unity 
asymptotically in all the three cases. The temperature profile becomes linear as the value of b (ratio of thermal conductivity of 
solid to fluid –λs/λf) increases. Another important result of the analysis is that the rise in temperature in variable porosity 
medium is about 25% more in comparison with absence of porous medium. Further, the results show that the total heat flux in 
the variable porosity medium is about 79% more as compared to constant porosity medium. And the variable conductivity 
enhances the total heat flux by about 33% as compared to constant conductivity of the medium. 

Keywords: Variable porosity, heat transfer, Runge-Kutta Gill method, Newton Raphson 

INTRODUCTION 
The study of simultaneous radiative and convective 
heat transfer problems in porous media are of    
considerable practical importance in many engineering 
applications. Most of the studies in porous media carried 
out are based on the Darcy flow model, which in turn is 
based on the assumption of creeping flow through an 
infinitely extended uniform medium[1] such as fixed 
bed catalytic reactors, packed bed heat exchangers, 
drying, chemical reaction engineering, and metal 
processing.The permeability and porosity measurements 
by Roblee et al [2] and Benenati and Brosilow [3] show 
that, due to the packing of particles and porosity cannot 
be taken uniform but has a maximum value at the wall 
and a minimum value away from the wall. Hence, one 
has to incorporate the variation of porosity to study the 
heat transfer rate accurately.To account for the effects of 
the solid boundary, inertia forces, and variable porosity 
on fluid flow and heat transfer rate through porous 
media, Brinkman's extension of Darcy's law should be 
used[4].Chandrasekhara and Vortmeyer[5] and Vafai[6] 
have incorporated the variable permeability to study the 
flow past and through a porous medium and have shown 
that the variation of porosity and permeability have 
greater influence on velocity distribution and on heat 
transfer. Earlier publications on heat transfer in a 
variable porosity medium have considered convection 
and conduction only[7] and have neglected the effect of 
thermal radiation. It has been found that even under 
some of the most unexpected situations such as in fur 
[8] and building insulations, radiation heat transfer 

could account for a non-negligible amount of the total 
heat transfer. Tong et al [9] have reported in their work 
that the radiant heat transfer in light weight fibrous 
insulations accounts for as much as 30% of the total heat 
transfer even under moderate temperature (300-400 K). 
It is considered that as a practical application the fibrous 
materials or the sintered materials with very high 
porosity are installed in duct as pieces for absorbing 
radiant energy from the wall [10-13]. As a matter of fact 
in fluidized bed systems, convection and radiation are 
the important mechanisms of energy transfer as 
indicated by experimental studies of Goshayeshi et al 
[14]. In the works quoted above, the authors have not 
considered the effect of variable porosity as well as 
variable thermal conductivity of the medium. Thus, the 
aim of this paper is to study the role of variable porosity 
on composite heat transfer in a boundary layer flow. The 
correlation between porosity and permeability is brought 
through Kozeny-Blake expression. In aclosely packed 
system the scattering effect is neglected [15-19]. 
However, in a sparsely packed system the scattering 
effect cannot be neglected and hence it is incorporated 
by the absorption and scattering coefficients (Ka + Ks). 
Radiation combined with other modes of heat transfer is 
highly nonlinear integro-differential equation whose 
exact analytical solution is nearly impossible. Hence an 
efficient tool to deal with multidimensional radiative 
heat transfer is in strong demand. Thus the problem 
involves a set of coupled equations with variable 



coefficients, which are solved by Runge-kutta Gill 
method in conjunction with Newton-Raphson iterative 
scheme. 

MATHEMATICAL FORMULATION AND 
BOUNDARY CONDITIONS 
 
The physical model and co-ordinate system are depicted 
in Fig.1.It consists of a steady laminar flow of gray fluid 
flowing past a flat plate with negligible viscous 
dissipation and surface temperature of the plate is taken 
to be uniform. 
 

 
Fig. 1 Geometry and Physical system 

 
The foregoing continuity, momentum, and energy 
equations for a radiating fluid are similar to those for a 
non-radiating fluid except for the radiative heat flux 
term -∂qr/∂y appearing in the energy equation. 
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Here ρ-density of the fluid (kg/m3), µ-dynamic 
viscosity(kg/ms), u,v-velocity components along x and 
y-axis respectively (m/s),ε(y) and k(y) are the 
expressions for variable porosity and permeability 
(Kozeny-Blake expression) respectively. ε0 is the mean 
porosity and its value is chosen as 0.4, c and d are 
empirical constants which depend on the packing of 
spheres and dp is the particle diameter. 
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Where Cp- specific heat capacity at constant pressure 
(J/kg-K), T-temperature (K) and λe-effective thermal 

conductivity of the medium and it is given as [6] 
 
λ𝑒 = ε(𝑦)λ𝑓  + [1 − ε(𝑦)]λ𝑠                                   (4) 

 
λf ,λs thermal conductivity of fluid and solid (W/mK) 
respectively. 
The boundary conditions are taken as 
𝑎𝑡 𝑦 = 0, 𝑢 =  𝑣 =  0, 𝑇 =  𝑇𝑤                              (5𝑎) 
 
𝑎𝑠 𝑦 →  ∞,𝑢 →  𝑈∞, 𝑣 =  0, 𝑇 →  𝑇∞                        (5𝑏) 
 
w, ∞ conditions at the wall and free stream respectively 

 ons at the wall and free stream 
ANALYSIS 
 
In the analyses of radiation effects upon the boundary 
layer flow, Cess [20] hasintroduced a model, according 
to which conduction is restricted within the radiating 
fluid to a thin region adjacent to the plate surface. This 
conventional boundary layer is optically thin, τ0<<1. 
However, the optically thin boundary layer represents 
only a portion of the entire temperature field, and 
consequently it is necessary to consider not only the 
boundary layer but also the adjacent radiation layer. In 
carrying out the solution, firstly the temperature profile 
within the radiation layer is determined. From this, the 
temperature at the outer edge of the boundary layer is 
obtained [21-24]. 
The basic equations are made non-dimensional through 
the introduction of the following similarity variables 
 

𝜂 =  𝑦 𝛿⁄ ;  𝑓′(𝜂) = 𝑢 𝑈∞⁄ ;  𝜃 = 𝑇 𝑇∞⁄ ;  𝜃𝑤 =  𝑇𝑤 𝑇∞⁄ ; 

𝑅𝑒 =  𝑈∞𝑥 𝑣⁄ ;  𝜉 =
2𝑥𝜎(𝐾𝑎 + 𝐾𝑠)𝑇∞3

𝜌𝑐𝑝𝑈∞
                                      (6)  

Where δ - boundary layer thickness and ξ- ratio of radiative 
flux to the incoming enthalpy flux and it also involves the 
absorption and scattering of the medium.  It should be noted 
that the boundary layer ‘y’ varies from 0 at the wall (w) to δ 
at the boundary limit. Thus δ is not a function of x but 
can be determined at x=L. 
Continuity equation is satisfied by introducing a stream 
function 𝜓(𝑥,𝑦) =  �𝜈𝑥𝑈∞𝑓(𝜂)  
Using the above notations, momentum Eq.(2) takes the 
form 

2𝑓′′′ +  𝜀0[ 1 + 𝑐𝑒−𝑑𝛾𝜂]𝑓𝑓′ −  
2𝑝𝑚2 [1 − 𝜀𝑜{1 + 𝑐𝑒−𝑑𝛾𝜂}]2

𝑅𝑒[ 1 + 𝑐𝑒−𝑑𝛾𝜂]2 𝑓′ 

= 0                                                                   (7) 

𝑤ℎ𝑒𝑟𝑒 𝑝m2 =  150𝑥2 𝜀02𝑑𝑝2�  ,𝑅𝑒 =  𝑈∞𝑥 𝑣⁄ , 𝛾 = 𝛿/𝑑𝑝,  

d = x/dp 

pm -porous parameter and Re- Reynolds number. The value 
of c = 0 for constant porosity and absence of porous medium 
and c=1 for variable porosity.The constant d is based on the 



length of the flat plate and particle diameter.For constant 
porosity situation Eq. (7) reduces to  

  2𝑓′′′ +  𝑓𝑓′′ −    
2𝜌𝑚2

𝑅𝑒
𝑓′ = 0                                                 (8) 

The transformed boundary conditions are 
𝑎𝑡 𝜂 =  0,𝑓 =  𝑓′ = 0                                                  (9𝑎) 

𝑎𝑠 𝜂 →  ∞ ,   𝑓′ =  1                                                                 (9𝑏) 

The solution of energy equation will now be intheform[6]
  
𝜃 = [ 1 + (𝜃𝑤 − 1)𝜃0(𝜂)]

+ (𝜃𝑤4 −  1 )[𝜃1(𝜂) + (Є𝑤 − 1 )𝜃2(𝜂)]𝜉

+ …                                                      (10) 

From the above equations, we now get the ordinary 
differential equations in terms ofθ0 ,θ1and θ2 as 
describedbelow  
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2
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2
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2
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Where  𝛬1 =  𝜀0[ 1 + 𝑐𝑒−𝑑𝛾𝜂] +  𝑏[ 1 −  𝜀0{1 + 𝑐𝑒−𝑑𝛾𝜂}] 

𝐻𝑜(𝜂) =  
1

(𝜃𝑤4 − 1)
[ 1 + 𝜃𝑤4 −  2{ 1 + (𝜃𝑤 −  1)𝜃0}4](14) 

Where b = λs/λf.The transformed boundary conditions using 
Equations (5)   and (10) will now take the form 
 
𝑎𝑡 𝜂 = 0, 𝜃0(0) = 1, 𝜃1(0) = 𝜃2(0) = 0                (15𝑎) 
 
𝑎𝑠 𝜂 → ∞, 𝜃0(∞) = 0,𝜃1(∞) =  θ2(∞) = 1          (15𝑏) 
 
According to Cess [20] and Krishnameti et al [21] the 
function θ0(η) is the temperature distribution for the case of 
negligible  radiationinteraction (ξ = 0) and the second 
bracketed term in Eq. (10) denotes the first order radiation 
effect on the temperature profile within the   gas. 
 
Wall heat flux: The net heat flux at the wall is of interest 
in most engineering applications. For a wall that is 
impermeable to flow,the net heat flux at the wall 
qwiscomposed of the conductive and radiative heat fluxes and 
given as [23] 
 

𝜓 =
𝑞𝑤
𝜎𝑇w4

=  �−
2𝜏0
𝑃𝑟𝜉

𝑑𝜃
𝑑𝜂

+  𝛷�
 η=0

                                       (16) 

Where Pr-Prandtlnumber,Ф-non-dimensional radiation flux,τ0 
= (Ka+ Ks) x /√Re=(Ka+ Ks)δ, is a measure of optical 
thickness of the boundary layer, which is based on the 
characteristic dimension δ. In evaluating the heat transfer 
between the plate surface and the medium, it is convenient to 
consider separately the radiative and convective transfers. 
Thus the expression for the radiative flux is 
 
 Φ =  Єw(θw4 −  1)[ 1 – G(θw)τ0] +..                               (17) 

 
Where G (θw) is given as 
 

G(θw) =  
2

(θw4 − 1)
� [{1 + (θw − 1)θ0(η)}4 −  1]dη
∞

0
 (18) 

 
By differentiating Eq. (18) w.r.t η one obtains 
 

 G′(θw) =  
2

(θw4 − 1)
[{1 + (θw − 1)θ0(η)}4 1]              (19) 

In order to solve the above equation, the boundary condition 
is taken as  
G(θw)=0at η =0 (20) 
The dimensionless conductive heat flux at the wall can be 
obtained as 
 
 Λ =  −  

2τ0
Prξ

dθ
dη  =  −  

2τ0
Prξ

[(θw − 1)θ0′ (0) + (θw4 − 1)Hξ ]       (21) 

Where H = [θ1′ (0) + (є𝑤 − 1)θ2′ (0)]         

Generally the convective heat transfer is expressed in terms 
of the Nusselt number 
 
𝑁𝑢 = 𝑞𝑐𝑤 𝑥

𝜆𝑒(𝑇𝑤  −  𝑇∞)
 =   – 𝑥𝜃′ (𝜂)

(𝜃𝑤−  1)𝛿
                                      (22) 

The convective heat transfer between the gas and the plate 
can be determined from equations (10) and (22)  
 
𝑵𝒖
�𝑹𝒆   

=– θ0′ (0)– (θw4 −1)
(𝜃𝑤−  1)

Hξ                                           (23) 

 
SOLUTION METHOD 
 
In the present analyses, equationsare  solved 
simultaneously by Runge-Kutta-Gill method in 
conjunction with the Newton-Raphson iterative 
scheme.Here f″(0) is the only unknown in equations (7) 
and (8). A rough estimate is made for f ″(0) for any 
specified value of η and then momentum equation is 
integrated. Computations are performed in double 
precision with 16000 steps for η i.e., η varying from 0 
to 40 with constant step size Δη = 0.0025. The 
convergence criterion followed is that the difference 
between the current and the previous iteration is 10-6. 



For solving G(θw) η is taken 40. In order to assess the 
validity of the solution, firstly the results are obtained 
in the absence of porous media. These results are in 
complete agreement with the results of Cess [20] and 
Krishnameti [21]. Further, the values of f, f ′ and f ″ are 
exactly matching with the values given in 
Chandrasekara and Nagaraju[18]. 
 
RESULTS AND DISCUSSION 
 
In the present study the following typical values are 
used; mean porosity εo = 0.4, particle diameter dp = 
0.01 and 0.02 m, and the free stream velocity         
U∞=1   ms-1. With air as the reference fluid for a typical 
bed of length x=0.1 m, a local distance from the 
leading edge of the plate, the values of d, γ, Re and Pm 
become 5, 0.01086, 70559 and 153 respectively. In the 
case of absence of porous medium ε0 is taken as 
unity.Further, for the cases of constant porosity and 
absence of porous medium the value of c is taken as 
zero. For the free stream temperature T∞=1000 K and 
wall temperature Tw = 500 K the value of ξ becomes 
approximately 0.01. 
The dimensionless velocity component f′(η) is 
represented in Fig.2 for three different cases, namely 
variable porosity, constant porosity and absence of 
porous media. In the cases of variable porosity and the 
absence of porosity media the velocity profiles possess 
very small curvature at the wall, whereas, in the case of  
 

 

Fig. 2 Velocity Profile forPr =0.7, θw = 0.5, Re = 7.0599 x104 
 
A constant porosity situation, the velocity is zero 
almost upto a certain distance from the wall. However, 
after a certain distance the velocity goes on increasing 
and approaches unity asymptotically.The rise in 
temperature is found to be about 25% more in the 
presence of variable porosity in comparison with the 
absence of porous medium. 
 

 
 

Fig. 3 Influence of θw on Temperature θ1(η) for                                  
Pm = 153, Pr = 0.7,  Re = 7.0599 x 104. 

 
Figure 3 exhibits the temperature profile in the 
presence of radiation (ξ ≈ 0.01). It shows that the 
presence of radiation increases the temperature 
distribution. For a cold plate, θw=0.5 the profile is 
concave downward in the limited value of η(≈ 5) , 
representing heat transfer from the medium to the wall. 
The cooling of the gas in the radiation wall layer 
reduces markedly the temperature at the outer edge of 
the boundary layer. As a result of this, the thermal 
processes occurring have little effect on the radiant flux 
density incident on the plate surface. The peak value in 
the negative direction occurs around η=2, and then the 
change of sign takes place between η=5 and 6. From 
η=6 onwards, the temperature increases. It can also be 
noticed that with increase in θw, the peak value in the 
negative direction decreases and for θw>2, the 
temperature distribution becomes totally positive and 
increases with η and reaches its maximum value at 
η=8. 
 

 
Fig. 4 Temperature Function in the presence of radiation 
θ2(η) and absence of Radiationθ0(η) 
 
Figure 4 shows the temperature distribution in the 
presence as well as in absence of radiation. As would 
be expected, the temperature distribution decreases in 
the absence of radiation and increases in the presence 
of radiation. 
 



 
 

Fig. 5 Influence of ‘b’on Temperature profile for                                                                                        
Pm = 153,  Pr = 0.7,  Re = 7.0599 x 104. 

Figure 5shows that the temperature increases with 
increasein  b.Thishas a considerable influence on the 
flow and heat transfer characteristics. According to 
Vedhanayagam et al [23] as the value ‘b’ increases, the 
effective thermal diffusivity of the saturated porous 
medium close to the boundary layer decreases. This 
results in a steeper temperature gradient close to the 
wall and a slowly decaying temperature profile away 
from the wall. It is also noticed from Fig.5 that for 
b=1650, the temperature profile decreases linearly. In 
fact, the values of ‘b’ are chosen from the experimental 
data provided by Jaguaribe et al [25] 

 
 

Fig. 6 Conductive Heat Transfer for  Pm = 153,                                   
Pr = 0.7,  Re = 7.0599 x 104 

The conductive heat transfer between the gas and the 
medium is depicted in Fig.6.It may be seen from Fig. 6 
that theemissivity  of the medium has a relatively strong 
influence upon the conductive heat transfer. The de-
crease of Єw results in increase in heat transfer, which 
can be explained as follows; the gas near the surface 
receives netradiation from the heated surface andgives 
up net radiation to the cooler free stream gas. Thus, a 
reduction in emissivity of the medium decreases the 
radiation heat transfer to this portion of the gas, and 
hence the conductive heat transfer increases. It may 
also be noted that from Table 1 that G(θw) is always 

positive. This may be explained from the fact that the 
gas within the boundary layer differs from the free 
stream temperature. Thus, the  radiation exchange 
between the portion of the gas and plate is reduced. 
The quantities 𝜃0′ (0) and 𝜃1′ (0) are also listed in Table1. 
It is to be noted that from Eq (21) the first order 
radiation term depends only upon the optical thickness 
τoand the temperature θw for an isothermal medium of 
unit emissivity. 
 
Table 1 Re= 70559, Pm = 153.1, Pr= 0.7, τo= 0.1, εo = 
0.4, c=1, d=5, γ = 0.0186, b=21 
 

θw     G(θw) −𝜃0′ (0) −𝜃1′ (0) 

  ½   15.8638 0.1055    0.2686 

  1   11.4363 0.1055    0.1424 

  2    7.3492 0.1055    0.0038 

  4    5.3032 0.1055   -0.0783 

 
In Fig.7 both cooling (Tw < T∞) and heating (Tw > T∞) 
cases are shown for the radiative flux (Φ).  If the plate 
surface is cooled (Tw < T∞),Φ becomes positive and 
increases with increase in τo. On the other hand, if the 
plate surface is heated (Tw > T∞) Φ becomes negative 
and increases considerably in the negative direction. 
 

 
 

Fig. 7 Radiative Transfer for  Pm = 153,                                              

Pr = 0.7, Re = 7.0599 x 104 

 

Φ 

Λ 



 
 

Fig. 8 Convective Heat Transfer for Pm=153,                                
Pr=0.7, ε0=0.4   C=1,d=5, γ=0.0109, b=21. 

 
The first term on the right side of Eq. (23) represents 
convective heat transfer in the absence of radiation effects, 
while the second term denotes the first order radiation 
influence. For the given set of parameters, we get–θ0′ (0) = 
0.1055 and θ2′ (0) = 0.5076, which shows that the radiative 
contribution is more in the presence of variable porosity.The 
variation of H with ЄW  Єw is shown in Fig. 8. This figure 
exhibits that, when ЄW = 1 the radiation interaction results in 
an increase in the convection heat transfer for θw < 2.1, but it 
decreases for θw > 2.1. This trend is similar to the observation 
made by Cess [20], but in this paper,  the reversal from an 
increase to a decrease in convection heat transfer is found to 
occur for θw ≈ 1.7. The enhanced value of θw (≈2.1) is due to 
the presence  of porous medium.  
 
Table 2:Comparison of values for Re= 70559, pm 
=306.2, Pr= 0.7, τo= 0.1 
 

  
-θ2

’(0) 
 
Ψ 

 
ξ 

 
Ψ 

Const. Porosity  
6.146 

 
3.080 

 
0.01 

 
4.210 

Variable Pm and 
Variableλ 
(d=10, γ=0.0217)  

 
0.5076 

 
4.210 

 
0.10 

 
0.994 

Absence of 
porous medium 
same as Cess 
[20]; 

 
1.418 

 
– 

 
0.10 

 
0.520 

 
Table 2 gives the comparative study of different 
physical quantities such as constant porosity, variable 
porosity, and variable conductivity of the medium. This 
table shows that the total heat flux in the variable 
porosity medium is about 79% more as compared to 
constant porosity medium. And the variable 
conductivity enhances the total heat flux by about 33% 
as compared to constant conductivity of the medium. It 
also shows that as ξ increases the total heat flux Ψ 

decreases. Thus, the Nusselt number decreases with 
increase in Pm. 
 
CONCLUSIONS 
 
1 The rise in temperature due to radiation transfer in a 
variable porosity medium is about 25% more as 
compared to constant porosity medium. 
2.For higher values of b (=1650) the temperature 
profile decreases linearly. 
3.The total heat flux in the variable porosity medium is 
about 79% more as compared to constant porosity 
medium. 
4.The total heat flux in the presence of variable 
conductivity is about 33% more as compared to 
constant conductivity. 
5. The total heat flux decreases with increase in ξ. 
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