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ABSTRACT 
This article studies fluid flows through an unsaturated 
porous matrix, modeled under a mixture theory 
viewpoint, which give rise to nonlinear hyperbolic 
systems. An alternative procedure is employed to 
simulate these nonlinear nonhomogeneous hyperbolic 
systems of two partial differential equations representing 
mass and momentum conservation for the fluid (liquid) 
constituent of mixture. An operator splitting technique is 
employed so that the nonhomogeneous system is split 
into a time-dependent ordinary portion and a 
homogeneous one. This latter is simulated by employing 
Glimm’s scheme and an approximate Riemann solver is 
used for marching between two consecutive time steps. 
This Riemann solver conveniently approximates the 
solution of the associated Riemann problem by piecewise 
constant functions always satisfying the jump condition – 
giving rise to an approximation easier to implement with 
lower computational cost. Comparison with the standard 
procedure, employing the complete solution of the 
associated Riemann problem for implementing Glimm’s 
scheme, has shown good agreement. 
 
INTRODUCTION 
Transport phenomena are usually described by parabolic 
or elliptic partial differential equations – always giving 
rise to regular solutions, however hyperbolic systems 
describe better flows through unsaturated porous media, 
although they may not admit a regular solution, but a 
generalized one, involving shock waves. Glimm’s 
scheme is a reliable method with mathematically ensured 
accuracy, preserving the shock wave magnitude and 
position, specially developed to deal with discontinuous 
problems. However, besides being limited to treat one-
dimensional problems, it requires the complete solution 
of an associated Riemann problem for marching between 
each two consecutive time steps. 
 

This work employs an alternative procedure – namely an 
approximate Riemann solver – developed by Saldanha da 
Gama and Martins-Costa (2008), which circumvents the 
requirement of a complete solution of the associated 
Riemann problem. This Riemann solver approximates 
the solution of the associated Riemann problem by 
piecewise constant functions – instead of using the four 
possible solutions of the complete solution of the 
Riemann problem – giving rise to an approximation 
easier to implement with lower computational cost. 
 
The mechanical model uses a Continuum Mixture 
Theory approach, in which the unsaturated porous 
medium is modeled as a mixture of three overlapping 
continuous constituents: a solid (a rigid, homogeneous 
and isotropic porous matrix), a liquid (an incompressible 
fluid) and an inert gas, accounting for the compressibility 
of the system. The mathematical model generates a 
nonlinear nonhomogeneous hyperbolic system of two 
partial differential equations. 
 
The resulting nonlinear problem is simulated treating two 
simultaneous problems as if they were sequential: the 
operator is split into a non-homogeneous (time-
dependent) ordinary part and a homogeneous hyperbolic 
one. This latter is simulated by a Glimm’s scheme for 
evolution in time, employing an approximate Riemann 
solver proposed by Saldanha da Gama and Martins-Costa 
(2008) for each two consecutive steps. The employed 
Riemann solver approximates the solution of the 
associated Riemann problem by piecewise constant 
functions always satisfying the jump condition, but not 
necessarily the entropy conditions (Smoller, 1983). The 
above-mentioned procedure, associated with the 
combination of Glimm’s scheme and an operator 
splitting technique, provides a convenient way for 
simulating hyperbolic systems. A comparison among 
results obtained by employing an exact solution of the 
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associated Riemann problem with the Riemann solver 
results shows the good performance of the latter strategy. 
 
1 Mechanical Model 
Considering a chemically non reacting mixture of a rigid 
solid constituent at rest, a liquid constituent – from now 
on denoted as fluid constituent and an inert gas, included 
to account for the compressibility of the mixture as a 
whole – it suffices to solve mass and momentum balance 
equations for the fluid constituent (Atkin and Craine, 
1976; Rajagopal and Tao, 1995) 
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where Fρ  is the fluid constituent mass density (the local 
ratio between the fluid constituent mass and the 
corresponding volume of mixture), Fv  its velocity in the 
mixture, FT  represents the partial stress tensor 
associated with the fluid constituent, Fb  is the body 
force (per unit mass) and Fm  is the momentum supply 
acting on the fluid constituent due to its interaction with 
the remaining constituents of the mixture.  
 
Constitutive relations for the partial stress tensor 
associated with the fluid constituent (TF = !! pI ) and 
the momentum supply acting on the fluid constituent 
(mF = ! µ f / K( )! 2vF ! µ f D( ) / K "! ) are explained 

in Saldanha da Gama et al. (2001). In these equations fµ  
represents the fluid viscosity, K  the porous matrix 
specific permeability (both measured considering a 
Continuum Mechanics viewpoint), D  a diffusion 
coefficient (analogous to the usual mass diffusion 
coefficient), p  is a pressure (assumed constant while the 
flow is unsaturated) and !  is the fluid fraction.  It is 
important to note that the ratio between the fluid fraction 
ϕ  and the porous matrix porosity ε  is defined as the 

saturation ψ , so that ! =" / # = $F / $F , with 0 <! !1 , 
0 <! !1 , in which fρ  is the actual mass density of the 
fluid – regarded as a single continuum, in contrast to Fρ  
defined as the fluid constituent mass density. Neglecting 
the first term of Fm , the Darcian term, and making 

!p = p! + µ f D( ) / K! , the mechanical model for an 

isothermal flow may be written as 
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in which !v  is the is the only non-vanishing component 
of the fluid constituent velocity Fv , the pressure is such 
that p = c!  (c being a constant) and the system at the 
right side of equation (2) was obtained employing the 
following redefinition: F !! , G !!v  combined with 
the dimensionless quantities: ! = r / R , ! = t !v / R , 

v = !v / "v   and p = !p /! !v 2 , in which R is a reference 
radius, !v  a reference velocity 
 
2 Glimm’s Scheme and Operator Splitting 
The first step consists in obtaining an initial 
approximation for (F, G) by advancing Δτ in time 
through the homogeneous part of the operator via 
Glimm’s method, using the values of (F, G) at time τ=τn 
as initial data. The numerical approximation for the 
solution at time τ=τn is then obtained by advancing in 
time with the same time step Δτ  through the purely time 
evolutionary system. This procedure is repeated until 
reaching a specified simulation time. The numerical 
procedure employed to advance from the time τ=τn to 
τ=τn+1 may be defined as the combination of problem (2) 
with F = F̂n (!); G = Ĝn (!)  at " = " n . First an initial 
approximation for (F, G,) is obtained by applying 
Glimm's method to the homogeneous associated system, 
subsequently the numerical approximation for the 
solution at time τ=τn+1 is finally reached by advancing in 
time to solve the following time evolutionary problem, 
with the same step Δτ =τn+1-τn through equations: 
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in which the right hand side of equation (3) indicates the 
approximations obtained by an Euler Scheme. 
 
Glimm's scheme, specifically developed to deal with 
discontinuous problems, preserves the shock waves 
magnitude and position, within an uncertainty of 
Δη (width of each step), however it is limited to one-
dimensional problems. In order to obtain the numerical 
approximation for the fields F  and G  at τn+1 – denoted 
as 1nF +  and 1nG + , the solution (or approximation) of the 
Riemann problem associated with the homogeneous 
portion of equation (2) must be known. Essentially 
Glimm’s scheme consists in performing time evolutions 
by solving the associated Riemann problem between 
each two consecutive steps. In short, Glimm’s method 
builds a solution for initial value problems – nonlinear 
hyperbolic systems subjected to arbitrary initial data – 
through the solution (or approximation) of as many 
Riemann problems as desired, to march from time τ=τn 
to time τn+1. Initially, the initial condition – given by a 
function of the position η – is approximated by 
piecewise constant functions. In the sequence, a Riemann 
problem, an initial value problem whose initial condition 
must be a step function, is to be solved – either exactly or 
by employing a Riemann solver – for each two 
consecutive steps (Martins-Costa and Saldanha da Gama, 
2001; Saldanha da Gama and Martins-Costa, 2008). The 
fields !Fn+1(!)  and !Gn+1(!)  used as initial data in the 
time evolutionary problem (3) are obtained by advancing 
Δτ in time employing Glimm's method to approximate 
the following homogeneous problem: 
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The generalized solution of the Riemann problem 
associated with the hyperbolic system (4), is reached by 
connecting the left (L) and right (R) states – using an 
intermediate constant state (*) – either by rarefactions or 
shocks.  
 
System (4) is approximated by employing Glimm’s 
scheme (Martins-Costa and Saldanha da Gama, 2001), to 
advance from time tn to time tn+1, in other words, !Fn+1(!)  

and !Gn+1(!)  are the solutions of (4) evaluated at the time 
τ=τn+1. The strategy for building a solution for an initial 
value problem consists of appropriately gathering the 
solution of a certain previously chosen number of 

Riemann problems to successively march from time τ=τn 
to time τν+1=τν+Δτ. The arbitrary initial condition given by 
a function of the position !  ( F (!,0) = F0 (!) , 

G (!,0) =G0 (!) ) is approximated by piecewise constant 
functions, by convenience, with equal width steps: 
 
F = F̂n !( ) ! Fn j = F̂n ! j +"n"!( )
G = Ĝn !( ) !Gn j

= Ĝn ! j +"n"!( )
   for    ! j #

"!
2
<! <! j +

"!
2

                            (5) 

 
in which !n  is a number randomly chosen in the open 
interval (!1/ 2 ,+1/ 2)  and Δη is the width of each step 
(Δη=ηj+1-ηj). 
 
The approximations for the initial data at a given time τj 
presented in equation (6) give rise, for each two 
consecutive steps, to the following Riemann problem: 
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Denoting by Fn j  and Gn j

 the generalized solution of the 

Riemann problem (6), the approximation for the solution 
of (4) at the time τ=τn+1 is given by: 
F = F̂n+1 !( ) ! Fn j !," n+1( ) and 

G = Ĝn+1 !( ) !Gn j
!," n+1( ) , for ! j <! <! j +1 . 

 
It is important to note that in order to prevent interactions 
among nearby waves of adjacent Riemann problems, the 
time step Δt must be chosen in such a way that the 
Courant-Friedrichs-Lewy (CFL) condition (Smoller, 
1983) is satisfied, thus assuring uniqueness for the 
solution: tn+1 ! tn " #x / 2 ! max( ) , with !

max
 

representing the maximum (in absolute value) 
propagation speed of shocks, considering all the 
Riemann problems at time tn.  
 
At this point it is important to stress some features of 
Glimm’s method. First if the width of the steps tends to 
zero the approximation obtained by Glimm’s method 
tends to the exact solution of the problem considering its 
weak formulation. Another characteristic of Glimm’s 



 4 

scheme is that it preserves shock magnitude (no diffusion 
being observed) and position – whose admissible 
deviation from the correct position is of the order of 
magnitude of the width of each step Δx for each time 
advance. 
 
3 The Riemann Solver 
The approximate Riemann solver employed (Saldanha da 
Gama and Martins-Costa, 2008) consists of assuming the 
solution for system (6) within a space of piecewise 
constant functions, so that any two states are be 
connected by a discontinuity. In other words: 
(FL ,GL )!1-shock! (F*,G*)! 2-shock! (FR ,GR ) . 
This approximation no longer requires considering the 
original four possible solutions, connected either by 
rarefactions or by shocks: FL ,GL( )  

Raref  or Shock
!   

F*,G*( )
Raref  or Shock
! FR ,GR( ) . On the other hand, the 

entropy conditions are not ensured. It is to be noted that 
the conservation laws are satisfied in a weak sense. 
 
The (generalized) solution of equation (6), within a space 
of piecewise constant functions, is reached as follows 
 

F ,G( ) =
FL ,GL( )   if  !" < (! !! ) / (" !" ) < s1

F*,G*( )     if   s1 < (! !! ) / (" !" ) < s2

FR ,GR( )   if   s2 < (! !! ) / (" !" ) <"

#

$
%%

&
%
%
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4 Numerical Results 
Figures 1 to 3 show a comparison employing the 
alternative procedure (Riemann solver) and the standard 
one (Riemann problem exact solution), for distinct 
initial-value problems. In all cases the evolution for fluid 
fraction and dimensionless velocity variation with radial 
position for a cylindrical wellbore the cylinder’s internal 
radius is depicted at the left-hand side while the external 
one is at the right side; considering six selected time 
instants, the first one representing the initial condition. In 
all the depicted results the vertical axis corresponds to 
the numerical value assumed by fluid fraction and 
velocity, while the horizontal one represents the spatial 
coordinate η. In all cases, distinct internal radii are used: 
in case (a) Ri=0.05 while in case (b) Ri=2.05, to evaluate 
the influence of the radius of curvature. 
 
The two columns at the left-hand side – namely a set 
composed by two columns and six lines, each line 
representing a distinct time instant – depict fluid fraction 
and velocity obtained by employing Glimm’s scheme 
with 300 steps for each time advance built from the exact 
solution of the associated Riemann problem. The two 
columns at the right-hand side show equivalent results 
for fluid fraction and velocity also obtained by using 
Glimm’s scheme with 300 steps for each advance in time 

but constructed by using the Riemann solver used in this 
work. In all the depicted problems it is important to note 
the good performance of the Riemann solver. 
 

(a) 

(b) 
Figure 1: Fluid fraction and dimensionless velocity 

variation with radial position for a cylindrical wellbore; 
initial data: linear decreasing velocity and step function 

fluid fraction. 
 

Figures 1 to 3 show a comparison employing the 
alternative procedure (Riemann solver) and the standard 
one (Riemann problem exact solution), for distinct 
initial-value problems. In all cases the evolution for fluid 
fraction and dimensionless velocity variation with radial 
position for a cylindrical wellbore the cylinder’s internal 
radius is depicted at the left-hand side while the external 
one is at the right side; considering six selected time 
instants, the first one representing the initial condition. In 
all the depicted results the vertical axis corresponds to 
the numerical value assumed by fluid fraction and 
velocity, while the horizontal one represents the spatial 
coordinate η. In all cases, distinct internal radii are used: 
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in case (a) Ri=0.05 while in case (b) Ri=2.05, to evaluate 
the influence of the radius of curvature. 
The two columns at the left-hand side – namely a set 
composed by two columns and six lines, each line 
representing a distinct time instant – depict fluid fraction 
and velocity obtained by employing Glimm’s scheme 
with 300 steps for each time advance built from the exact 
solution of the associated Riemann problem. The two 
columns at the right-hand side show equivalent results 
for fluid fraction and velocity also obtained by using 
Glimm’s scheme with 300 steps for each advance in time 
but constructed by using the Riemann solver used in this 
work. In all the depicted problems it is important to note 
the good performance of the Riemann solver. 

 

(a)

(b) 
 
Figure 2. Fluid fraction and dimensionless velocity 

variation with radial position for a cylindrical wellbore 
initial data: linear decreasing fluid fraction and step 

function velocity. 
 
 
 

Figure 1 presents results for initial data given by a linear 
decreasing velocity (v0 = (N ! I +1.) / N ) and step 

function fluid fraction (!0L
= 0.7, !0R

= 0.1 ). It shows a 

very good agreement when comparing the left and the 
right sides, with the velocity evolution showing some 
minor differences – namely when a connection by 
rarefaction was used to obtain the exact solution. 
Comparing figures 1a (Ri=0.05) and 1b (Ri=2.05) it may 
be noted the influence of the radius of curvature, as Ri 
increases the curvature of the fluid fraction near the 
internal cylindrical shell radius decreases, while the 
velocity presents a more uniform behavior in the jump. 

 

(a) 

(b) 
Figure 3. Fluid fraction and dimensionless velocity 

variation with radial position for a cylindrical wellbore 
initial data: step function velocity and fluid fraction. 

 
In Figure 2 the initial data consist of a shock prescribed 
for the velocity – a step function with 
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(v0L
=1.0,  v0R

= 0.0 ) while the fluid fraction is given by 

a linear decreasing function (!0 = (N ! I +1.) / N ).  
 
Since the results obtained through the exact solution of 
Riemann problem, depicted at the first two columns, give 
rise essentially to connections by shocks, the Riemann 
solver employed in this work (depicted at the two last 
columns) shows a very good agreement with those 
obtained by employing the exact solution. Comparing 
figures 2a (Ri=0.05) and 2b (Ri=2.05) for verifying the 
influence of the radius of curvature it may be noted again 
that as the internal cylindrical shell radius increases the 
curvature of the fluid fraction near the internal cylinder 
radius decreases, while the influence on the velocity 
behavior is barely noticeable. 
 
In Figure 3 the initial data is given by two distinct 
(increasing) step functions for the velocity 
(v0L

= 0.0,  v0R
=1.0 ) and the fluid fraction 

(!0L
= 0.1,  !0R

= 0.9 ). Like in the case considered in 

Figure 2, the results obtained employing the exact 
solution of Riemann problem give rise to connections by 
shocks, so they present very good agreement with those 
obtained with Riemann solver. The influence of the 
radius of curvature is observed by comparing figures 3a 
(Ri=0.05) and 3b (Ri=2.05). As the internal cylindrical 
shell radius increases the curvature of the fluid fraction 
near the external cylindrical shell radius decreases 
(opposing the behavior verified in Figures 1 and 2), 
while, like in Figure 2, there is almost no influence on 
the velocity behavior. 

 
CONCLUSIONS 
The numerical methodology presented in this work 
allowed the accurate approximation of a nonlinear 
nonhomogeneous hyperbolic system of partial 
differential equations, simulated by combining Glimm’s 

scheme and an operator splitting technique. This operator 
splitting procedure (in which the homogeneous part of 
the operator is split away from the purely time 
evolutionary one) has shown a good performance when 
the homogeneous associated problem simulation 
employed an approximate Riemann solver (Saldanha da 
Gama and Martins-Costa, 2008). This Riemann solver 
was employed to implement Glimm’s method for 
advancing in time. Glimm’s scheme was also 
implemented using the complete solution of the 
associated Riemann problem and comparison of 
qualitative results employing these two methodologies 
has shown very good agreement. 
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