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ABSTRACT

Previous studies have shown that stacked multi-layer
mini-channels heat sinks with square or circular channels
have advantages over traditional single layered channels in
terms of both pressure drop and thermal resistance. In this
work, porous media is used in the multi-layered stacked
mini-channels instead of square or rectangular channels and
the effect of the same on pressure drop and thermal perfor-
mance is studied. Porosity scaling is done between the lay-
ers of porous media and is compared with unscaled stacked
multilayer channel. Porosity scaling allows the porosity to
vary from one layer to the next layer and could result in a
lower pressure drop and better thermal performance.

Keywords: porous media, forced convection heat trans-
fer,mixing effect

NOMENCLATURE

Ay Surface Area of Heated Surface (m?)
C Form Coefficient

G Inertial Resistance Factor (1/m)

D, Pore Diameter (m)

R Thermal Resistance (K /W)

R” Unit Thermal Resistance (K /W /cm?)
Re), Modified Reynolds Number

T; Average Heat Sink Surface Temperature (K)
Tovin Inlet Water Temperature (K)

Vi Volume (m?)

Vi Total Volume ()

Greek Symbols

a 1/viscous resistance (1/m?)

p Density (kg/m>)

¢ Porosity
u Viscosity (kg/m.s)

1 Introduction

The need for advances in cooling of electronic equip-
ment has become very significant due to the extensive de-
velopment of semiconductor and microelectronic equipment
technology. The electronics industry has moved toward
higher circuit density and faster operation speed [1]. This
calls for cooling systems which can dissipate high power
from small surface area. This is the main characteristic
of cooling of microelectronic equipment. Mini and micro
channel heat sinks are being used currently for such sys-
tems. Heat sinks are usually characterized by small surface
area and are made of a thin block of metal. Liquid coolant
flows in small channels in the heat sink and absorbs the heat
from the electronic equipment. The channels through which
the coolant flows are usually very small and this gives rise to
a thin thermal boundary layer [2]. This results in a large heat
transfer coefficient. Mini and micro channels are widely
used in electronic cooling with a liquid coolant. However,
the modern semiconductor and micro-electronics technol-
ogy requires very high performance heat sinks.

Metal foams which act as porous media have been
widely studied [3-9] in many applications and have been
used to enhance heat transfer in forced convection. Studies
[10] showed that fitting a heat exchanger with porous media
enhances the heat transfer rate. It was also suggested [11]
that using porous media in heat sinks improved the thermal
performance and heat flux of up to 6000 kW /cm? could be
removed. Numerical investigations [12] of fluid flow and
heat transfer characteristics of a pipe filled with porous me-
dia showed that the large contact surface area offered by
porous media enhances the heat transfer performance.
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Porous media has also been used widely in many con-
temporary areas such as combustion-heat exchanger system
[13, 14], two-phase flow [15, 16], solar collectors [17-19],
drying processes [20], geothermal energy [21] and biologi-
cal systems [22,23].

Previously, various approaches have been used to im-
prove the performance of heat sinks. It was shown [24] that
optimizing the ratio between the total surface area of the
channel walls in contact with the fluid and the area of the
circuit results in a very high performance heat sink with a
thermal resistance lower than 0.1 (K/W) and was tested up
to 790 (W /cm?). The same study [24] also showed that the
thermal resistance was independent of the power level. Re-
laxing restraints [25] such as laminar flow, fixed fin thick-
ness to channel width ratio and aspect ratio could also im-
prove the thermal performance of heat sinks. By relaxing the
above mentioned restrictions, thermal resistance [25] was re-
duced by 0.056(K /W) when compared to those obtained in
previous investigations. All these studies have used vari-
ous approaches to optimize the thermal performance of heat
sinks.

In this study, the effect of porous media in the thermal
performance of heat sink is studied and minichannels with
uniform porosity and varying porosity in the flow normal di-
rection are compared. Water, which is the most commonly
used working fluid in heat sinks, is used in this study. The
application of porous media has been combined with the
constructal law. Constructal law [26-28] allows the flow ge-
ometry or flow architecture to morph. A previous study [29]
has reviewed the effect of scaling according to constructal
law in minichannel heat sinks. The objective of this study is
to investigate the effects of intentionally varying the porosity
along the flow normal direction. CFD models have also been
used [29] to show that scaled multi-layered mini-channels
with square cross-section channel gives better thermal and
hydraulic performance when compared to unscaled mini-
channels.

2 Heat Sink Porosity Scaling
Porosity is defined as ratio of the volume occupied by
the fluid to the total volume of the material [30].

_ Y

¢_Vr 6]

The important parameters that are used as an input in the
simulation of flow through porous media are porosity, form
coefficient C, viscous resistance 1/¢, and inertial resistance
C>. These parameters can be obtained from the Brinkman-
Hazen-Dupit-Darcy equation [30]. The form coefficient is
calculated using the relation,

Cc= )

&
VK

TABLE 1. Porosity parameters for unscaled mini-channels

L(1/m?) | Cy(1/m)
14% 14.54%10° 73.5

Porosity

TABLE 2. Porosity parameters for the scaled 5 layer mini-
channel

Layer | Porosity é (1/m*) | Co(1/m)
1 14% | 14.54x10° 73.5
2 18% | 18.17x10° | 114.9
3 22% | 22.71x10° | 179.5
4 28% 28.3x10° 280.5
5 35% | 35.49x10° | 4383

The constant Cy often takes the value 0.55 (1/m) and K is
permeability whose value is fixed at 10~7. The viscous re-
sistance (1/m?) is computed using the relation

3)

=l

1
o

The inertial resistance factor (1/m) is computed using the
formula

Cy=2xCx¢> “)

Porosity scaling allows the porosity to vary in the
minichannel. Porosity scaling is done in the model with
stacked five layer minichannels, where the porosity is var-
ied only in the direction normal to the flow direction. The
porosity scaling factor is given by the equation:

Ot 1
_— = 5
o Y )

In this equation, ¢ is the porosity of the k" layer, ¢ is the
porosity of the (k -+ 1) layer and 7 is the porosity scaling
factor.

When a porosity scaling factor of 1.25 is used, the
porosity of each layer increases away from the bottom wall,
i.e., the lowest layer has the least porosity and porosity in-
creases in the subsequent layers. The values of the poros-
ity parameters, i.e., the viscous resistance, inertial resistance
and porosity have been calculated and tabulated after scaling
the porosity. The values are tabulated and are given in the
Table 1 and Table 2.

These parameters are used as porous media input in the
CFD code FLUENT. The dimensions of the mini-channels
considered are given in Table 3. A schematic diagram of
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TABLE 3. Dimensions of the mini-channels

No. of layers | Height(mm)
1 1.52
2 2.54
3 3.56
4 4.57
5 5.59

QOutlet

Inlet

FIGURE 1. Schematic Diagram of the Stacked Five Layer Heat
Sink

the five layer heat sink is given in Figure 1. All the samples
considered have the same length and width of 30.5 x 12.7

mm2

3 Numerical Simulation
Reynolds number can be redefined for porous media us-
ing the pore diameter as the characteristic length.

D
Rep:p rt
u

(6)

It is shown that non-Darcy flow becomes significant for
Reynolds number greater than 40 [31]. In this study, the
minimum Reynolds number, Re,,, is 56.32 and the maximum
is 281.65. Flow through porous media is modeled in Fluent
by adding an extra source term to the standard momentum
equations. For a homogeneous porous medium, the extra
source term is given by the following equation:

A .
NES (Mza‘f'zCZp‘uluz) @)

The mini-channel model with both stacked multi-layers
and unstacked layers have been modeled using ANSYS De-
sign Modeler. Mesh generation of all the 3D models is then

done using the pre-processor ANSYS meshing tool. The en-
tire model is discretized using hexahedral mesh elements.
The minimum orthogonal quality of the mesh is 1.0 and the
maximum aspect ratio is 1.81.

The walls have a no slip boundary condition. Appropri-
ate boundary conditions are applied to the models which are
then solved. The boundary conditions are as follows:

1. Inlet: The boundary condition of the inlet of the mini-
channels is set to velocity inlet. Five different values of
flow rates, 100 m!/min, 200 ml/min, 300 ml/min, 400
ml /min and 500 mi /min are considered.

2. Wall: The four sides of the mini-channels are set to Wall
boundary with a no-slip boundary condition. On the
bottom wall, a constant heat flux of 80 W is applied.

3. Outlet: Atmospheric pressure is prescribed at the outlet
boundary condition.

4. Fluid: In the fluid zone boundary condition, the com-
puted porous media parameters, porosity, viscous resis-
tance and inertial resistance are given as inputs. The
fluid considered in this study is water.

The governing equations of the 3D, steady state flow
in the mini-channels are solved using the commercial CFD
code ANSYS FLUENT. Convergence criteria for residue
mass, momentum and energy are set at 107°,

4 Results and Discussion

From Figure 2, it can be seen that the mini-channel
with porosity scaled layers shows the best performance in
terms of overall pressure drop across the channel. Mini-
channel with a single layer unscaled porosity layer shows
the highest pressure drop. The highest pressure drop de-
crease is obtained when comparing the single layer unscaled
mini-channel and the five-layer scaled mini-channel. In the
five-layer scaled mini-channel, pressure drop is decreased by
81% at the lowest flow rate and 78% at the highest flow rate
when compared with single-layer unscaled mini-channel.
When comparing the five-layer unscaled and scaled mini-
channels, the pressure drop is decreased by 28% at the low-
est flow rate and 24% at the highest flow rate.

Figure 3, shows the effect of varying porosity scaling
factors on the pressure drop. Different porosity scaling fac-
tors are considered which increases and decreases the poros-
ity in the flow normal direction. From Equation 5, a poros-
ity scaling factor greater than 1, increases the porosity in the
flow normal direction from the bottom wall and a porosity
scaling factor less than 1, decreases the porosity in the flow
normal direction from the bottom wall.

A porosity scaling factor equal to 1 implies that the
porosity is uniform and constant. When the porosity scaling
factor is less than 1, i.e. porosity decreases in the flow nor-
mal direction from bottom wall, the pressure drop increases
considerably. Porosity scaling factor is greater than 1, the
pressure drop reduces.

When the pressure contours are studied, the reason be-
hind the lower pressure drop in scaled mini-channels is ap-
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FIGURE 2. Pressure drop comparison of scaled and unscaled
mini-channels
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FIGURE 3. Pressure drop comparison of mini-channels with dif-
ferent porosity scaling factors

parent (Figures 4, 5, and 6). In the unscaled models, the
porosity is constant throughout the flow domain. However,
in the scaled model, the porosity increases in the flow normal
direction by a factor of 1.25. Porosity is the ratio of the fluid
volume to the total volume. Hence, when the porosity in-
creases for a fixed total volume, the fluid volume increases.
This creates a lower pressure drop.

The overall thermal resistance is defined by the relation,

R— Ts - Tw,in (8)
q
The unit thermal resistance, R” is defined as,
R// _ TS - Tw,in (9)
q/ Api

From Figures 7 and 8, it can be seen that the thermal
resistance of scaled heat sinks is lower than unscaled heat
sinks. The benefit of stacking layers ceases beyond the third
layer. However, when a five layer mini-channel heat sink is
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FIGURE 4. Total Pressure contour of unscaled five-layer
mini-channel with flow rate of 100ml/min
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FIGURE 5. Total Pressure contour of scaled (y=1.25) five-
layer mini-channel with flow rate of 100 m!/min
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FIGURE 6. Total Pressure contour of scaled (y=0.9) five-layer
mini-channel with flow rate of 100 ml /min

subjected to a porosity scaling by a factor of 1.25, the ther-
mal resistance is lower than any of the unscaled heat sinks.
At the lowest flow rate, the thermal resistance of the scaled
heat sink is 3% lower than that of the unscaled heat sink
and at the highest flow rate, the thermal resistance of the
scaled heat sink is 9% lower than that of the unscaled heat
sink. The maximum volumetric heat transfer coefficient of
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1.25

the unscaled five layer heat sink is 28.5 MW /m>K and the
maximum volumetric heat transfer coefficient of the scaled
heat sink is 31 MW /m’K.

From Figure 9, it can be seen that volumetric heat trans-
fer coefficient increases much more quickly with flow rate
than the unscaled heat sink. This shows that scaled heat sink
has better thermal dispersion, as flow rate increases, than an
unscaled heat sink [6]. Considering the reduction in pressure
drop also, the scaled five layer heat sink exhibits a two-fold
advantage over the unscaled five layer heat sink.

When the scaled five layer heat sink is compared with a
stacked five layer non-porous heat sink [29], it can be seen
that the pressure drop is greater for all flow rates. However,
the thermal resistance in the case of the porous media heat
sink is lower.

5 Conclusion
Numerical analysis have been conducted for mini-
channels with one, two, three, four and five layers and poros-
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FIGURE 9. Comparison of Volumetric Heat Transfer coeffi-
cients of scaled and unscaled heat sinks

ity scaled five layer. A porosity scaling factor of 1.25 was
used. Five different flow rates of water, 100, 200, 300,
400 and 500 ml/min were considered. The overall pres-
sure drop and thermal resistance were computed for each
case and studied. The following conclusions can be de-
rived from this work: The overall pressure drop can be de-
creased by increasing the number of stacked layers. Pres-
sure drop in the five layer porosity scaled heat sink is 81%
and 78% lower than the single layer heat sink at the lowest
and highest flow rate. When compared to the unscaled five
layer heat sink, the pressure drop in the five layer porosity
scaled heat sink is 28% and 24% lower at the lowest and
highest flow rate. A similar trend is observed when ther-
mal resistances are compared. Thermal resistance of the
five layer porosity scaled heat sink is 3% and 9% lower than
that of the unscaled heat sink at the lowest and highest flow
rate. Scaled five layer heat sink has higher volumetric heat
transfer coefficient compared to the unscaled five layer heat
sink due to better thermal dispersion. A five layer porosity
scaled(y=1.25) heat sink has a two-fold advantage, in terms
of pressure drop and thermal resistance, over the unscaled
five layer heat sink. Stacking up layers decreases the ther-
mal resistance up to the third layer. Decreasing the poros-
ity in the flow normal direction from the bottom wall in the
five-layered minichannel, increases the overall pressure drop
compared to constant porosity mini-channels. In this study,
the porosity was varied only in the flow normal direction.
This study can be further extended to study the effect of in-
tentionally varying the porosity along the axis of flow.
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