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ABSTRACT 
We present a mathematical model for targeting a drug at 
malignant tissue cells in a permeable microvessel. The 
drug molecules are transported in carrier particles which 
are assumed to be porous spheres. This mode of drug 
delivery is non-invasive and has less toxic effects on 
healthy cells and tissues. The microvessel tube (see 
Figure 1) is subdivided into three regions, the outer 
endothelial glycocalyx layer where the blood has a 
Newtonian character, and a core and plug regions where 
the blood flow is described using a non-Newtonian 
Casson fluid model which is suitable for microvessels of 
radius 5 mµ . Targeting is achieved through a locally 
applied magnetic field using a cylindrical magnet 
positioned outside the body near the tumour position so 
that the carrier particles, bound with nanoparticles and 
drug molecules are captured at the tumour site. The study 
seeks to understand, inter alia, the effects of the size and 
permeability of the carrier particle, the volume fraction 
of embedded magnetic nanoparticles and the placement 
of the external magnetic field on the magnetic targeting 
of the carrier particles.  
 
INTRODUCTION 
Blood flow in microvessels has different characteristics 
compared to blood flow through large vessels. The 
microscopic properties of the blood and interactions 
among plasma, cells and blood vessels, in particular 
blood-vessel wall interactions affect the nature of the 
blood flow through micro vessels. Due to deformation 
and rotation of red blood cells (RBCs), these cells 
accumulate near the axis of the microvessel producing a 
layer that moves with a constant velocity. A cell-depleted 
layer appears at the outer region, near the wall of the 
microvessel. In micro vessels or channels, blood flow 
represents a remarkable two-phase nature, with a 
peripheral layer of plasma (Newtonian fluid) and a core 
region of suspensions of erythrocytes which has a non-
Newtonian character, Bugliarello and Sevilla [1]. 
Seshadri and Jaffrin [2] considered a two phase fluid 
model in which the outer cell-depleted layer has a lower 
hematocrit than the core region. The concentration of 
RBCs in the cell- depleted layer was assumed to be 50% 

of that in the core region. Gupta et al. [3] divided the 
outer layer into a cell-free plasma layer and cell-depleted 
layer. Sankar and Lee [4] investigated a two-phase fluid 
flow through a stenosed blood vessel. The endothelium 
layer of the microvessels covered by a glycocalyx layer 
contains a gel like layer of membrane-bound 
glycoproteins and plasma proteins.  Liu and Yang [5] 
studied the eloctrokinetic effect of the endothelial 
glycocalyx layer in small blood vessels. The influence of 
the glycocalyx layer on the blood flow has been studied 
by many researchers, see [6, 7]. Shaw and Murthy [8] 
considered a two-phase fluid model and studied the 
significant effect of the glycocalyx layer on the magnetic 
targeting of a carrier particle in an impermeable 
microvessel. It was observed that the glycocalyx layer 
caused additional resistance to micro-vessel flow [9]. 
This was assumed to be due to its high negative charge.  

 
A magnetic targeted drug delivery system is an attractive 
delivery strategy due to its non-invasiveness, high 
targeting efficiency and minimal toxic side effects on 
healthy cells and tissues [10, 11]. Mathematicals models 
for predicting the magnetic targeting of multifunctional 
carrier particles designed to deliver therapeutic agents to 
malignant tissue in vivo have been studied in [12]. 
Recently, a number of studies on magnetic drug targeting 
in a microvessel have used a two-phase non-Newtonian 
fluid model [13, 14].  
 
Porous spheres have several, extremely valuable 
therapeutic and biotechnological applications, including 
cell immobilization, drug delivery, and as packing 
material in chromatography [15]. Porosity is important in 
improving the performance of spheres [16]. Large pores 
increases the permeability of the spheres, significantly 
increasing their surface area, allowing them to be used as 
culture systems for growing adherent cells, to be used for 
water remediation at high diffusion rates, or be used in 
the separation of large biomolecules, etc. [17].  
 
The purpose of the present investigation is to explore the 
effect of a porous carrier particle on magnetic drug 
targeting in permeable microvessel using a two-phase 
fluid model. In the peripheral layer, the blood has a 
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Newtonian character while in the core and plug regions 
the blood can be described using the Casson model. The 
fluid velocity in the microvessel with a porous 
glycocalyx layer is presented and the trajectories of the 
carrier particle are analyzed for various parameters such 
as the permeability of the carrier particle, the radius of 
the carrier particle, permeability of the inner microvessel 
wall, distance of the carrier particle from the magnet 
axis, the volume fraction of nanoparticles, etc. This study 
will help in the understanding of the dynamics of 
magnetic drug targeting in a microvessel. 
 
NOMENCLATURE 
h = Radius of the microvessel 
hp = Radius of plug region 
J0 = Bessel function of order 0 
J1 = Bessel function of order 1 
K = permeability 
Ms = Magnetization of the magnet 
N = number 
R = Radius 
r = radial coordinate 
u = velocity of the fluid 
V = volume 
v = velocity of fluid inside the sphere 
Y0 = First kind Bessel function of order 0 
Y1 = First kind Bessel function of order 1 
z = axial coordinate 
 
Greek Symbols 
βvf = Volume fraction of nanoparticle 
η = viscosity 
θ = angular coordinate 
ε = permittivity of the medium 
κ = Debye length 
ρe = total charge density 
χ = permittivity 
ψz =  Surface potential 
τ = Shear stress 
τy = Yield stress 
 
Subscripts 
avg = average 
cp = Carrier particle 
g = Glycocalyx layer 
mag = Magnet 
mp = magnetic particle 
p = Plug region 
1 = Fluid Region 
2 = Peripheral region 
 
 
1 Mathematical Formulation 
Consider the microvessel as a straight circular cylinder 
of length vl ,  and radius h . The blood flow in the micro 
vessel is described by a two phase non-Newtonian 
model. In the core region, which is of radius 1h , we use a 

Casson fluid model. The radius of the thin plug region is 

ph . The peripheral layer of plasma near the wall is taken 

as a Newtonian fluid and has thickness 1h h−  (Figure 1). 

Let ( r ,θ , z ) be the cylindrical polar coordinate system, 
where the z-axis is taken along the axis of the blood 
vessel, r  and θ  are coordinates taken along the radial 
and the circumferential directions, respectively.  

 
Figure 1: Schematic diagram of the problem 

 
The fluid equations outside the sphere are written as 
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and at the porous sphere surface 

, 1, 2 ati
i i i i

iu vu v v i r R
r r

µ γ∂ ∂ = = − = = ∂ ∂   
(4) 

where i=1 and 2 represent the fluid region and peripheral 
region, respectively. Solving equations (1) with 
conditions (3), the velocity of the fluid at fluid region 
and at the porous region, respectively is written as 
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, 
Similarly by solving equation (2) with boundary 
conditions  (4), the velocity of the fluid inside the porous 
sphere in the fluid region and peripheral regions, 
respectively is written as 
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where the constants ( 1,.,6)i iA = are given in the 
Appendix. The average velocity of the porous sphere 
carrier particle is 
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The drag force on the spherical carrier particle in Casson 
fluid is  
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The total magnetic force on the carrier particle is the sum 
of the forces on the embedded magnetic particles given 
by, 

0

3
( . )

( 3)
mp

m mp mp a a
mp

N V
χ

µ
χ

= ∇
+

F H H , (7) 

Following Shaw et al. [5], we obtain the radial trajectory 
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The axial position of the carrier particle is given by 

0 avgz z u t= +  (9) 

 
2 Solution Method 
It is important to note that the susceptibility of the 
suspending medium has a significant effect on the 
magnetic force and also on the trajectories of the carrier 
particle. The nanoparticles that are used in the carrier 
particles are Fe3O4 particles and these are biocompatible 
with a density 5000kg/m3.  
 
We adopt a magnetization model for Fe3O4 and the 
diameter of the magnet used is 6 cm ( magR = 3 cm), with 

a magnetization sM  = 106 A/m. The surface of the 

magnet is positioned at a distance 2.5 cm (i.e. d = 5.5 
cm) from the axis of the micro vessel as shown in Figure 
1. This distance is altered to take into account the effect 
of withdrawal of the external magnetic field on the 
particle trajectories, which gives good information 
regarding the positioning of the external magnetic field. 
The values of the parameters have been chosen from 
empirical data in the literature. In particular, the 
following values are considered in the present study: 

4/ 2 10dp dz = ×
2N/m , 50mVsψ = , 3 24 10 N/myτ

−= × , 
191.6 10e C−= × ,  2 0.985h h=  8 1 15.3 10 CV mε − − −= × , , 

zE =5 mV, n∞ =100 mol m-3, 231.38 10Bk −= ×  JK-1, 

sz =1, 101.38 10D −= ×  m2 s-1 , 1 2ch hξ= × , T = 300 K 
[5].  
 
It is worth noting that if 2h h= , we retrieve the single 
phase fluid results. 
 
3 Results and Discussion 
We solved equations (8) and (9) simultaneously to 
determine the trajectory of the carrier particles for 
different parameters. The gel-like glycocalyx layer plays 
a vital role in blood flow as it protects the vasculature 
from harmful diseases such as atherosclerosis. The 
permeability of the glycocalyx layer influences the 
velocity in the outer region. The permeability of the 
diseased portion of a microvessel is less than that of a 
normal microvessel. The influence of the permeability of 
the glycocalyx layer on the trajectories of carrier 
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particles is shown in Fig. 2. From the equation(1), it is 
clear that this mainly affects the velocity at the cell-
depleted layer. The fluid velocity decreases in the 
presence of a glycocalyx layer and decreases with an 
increase in the permeability of the layer. With a decrease 
in the axial velocity, the relative velocity of the carrier 
particle decreases and the carrier particle is easily 
captured at the tumour position. The drug particles are 
more easily captured at the tumor location than at any 
other location, and this is because the permeability in the 
tumor region is higher than in normal tissue. 
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Figure 2: Trajectories of the carrier particles for different 

permeability of glycocalyx layer 
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Figure 3: Trajectories of the carrier particle for different 
permeability of porous sphere 
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Figure 4: Trajectories of the carrier particle for different 
radius of the carrier particle 
 
The magnetic force depends on the surface area of the 
particles. For a constant volume, the surface area of a 

porous sphere is larger than the surface area of a solid 
sphere. This is very useful for drug targeting of a tumour 
location. Due to porosity, the relative velocity of the 
porous sphere in the fluid flow is less than the fluid 
velocity at the microvessel. The permeability of the 
porous sphere plays a vital role of reducing the relative 
velocity of the carrier particle and increasing the 
magnetic force on the carrier particle. Therefore the 
magnetic force on the particle increases with an increase 
in the permeability of glycocalyx layer allowing the 
carrier particle to be easily captured at the tumour 
position. 
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Figure 5: Trajectories of the carrier particle for 
difference stress-jump constants 
 
Increasing the volume and surface area of the carrier 
particle increases the magnetic force on the carrier 
particle. As a result the magnetic force is larger and the 
carrier particle is easily captured at the tumour region. 
From equation (4) it is clear that the stress-jump 
parameter reduces the fluid velocity at the sphere 
surface. As a result, the relative velocity of the porous 
sphere increases. So with an increase in the stress-jump 
parameter, the carrier particle moves away from the 
tumor region which as is clearly shown in Figure 5. For 
higher values, the particles are captured easily near the 
tumor region.  
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Figure 6: Trajectories of the carrier particle for different 
volume fraction of the nanoparticle. 
 
From the definition, it is clear that the volume as well as 
the surface area of the carrier particle increases with an 
increase in the volume fraction of the nanoparticles. With 
increase in the volume fraction, the carrier particles are 
captured easily near the tumour position.  
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CONCLUSIONS 
We present the following important conclusions from 
this study. We have shown, inter alia, that (1) due to a 
larger surface area, porous particles are captured more 
easily at the tumour position than solid spheres, (2) the 
escape velocity of the carrier particles decreases when 
the radius of the carrier particle increases, and (3) an 
increase in the nanoparticle volume fraction improved 
the chances of the carrier particle being captured by the 
magnet. 
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