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ABSTRACT
This paper presents the experimental analysis of air flow

vortex propagation through porous screens. This study is
conducted by a new and unique experimental setup for ve-
locity measurements and visualization of air vortex interac-
tion with porous screen. A custom-made, high-precision
vortex generator provides a variety of velocity profiles for
vortex generation with an unprecedented level of precision.
The flow fields are captured with the use of a fog gener-
ator and a high-speed CCD camera. The porous screens
are constructed out of acrylic rods with various orientations,
thickness, and porosities from rod separation. The results
presented in this paper show the effect of porosity and air
injection velocity on the behavior of air flow (separation,
accumulation), and the transport phenomena of vortex flow
while interacting with porous screens.

keywords: porous media, vortex flow

NOMENCLATURE

D Piston Diameter (m)
Fr Frame number
ReJ Jet Reynolds Number
t time (s)
U Piston Velocity (m/s)
ttotal Total time of air flow (s)
RP Piston radius (m)
∆t Time interval (s)
x,y Horizontal and vertical axis (m)
ϕ Surface Porosity

1 INTRODUCTION
A vast number of natural and man-made materials are

solids that contain pores for example, rocks, soil, biological
tissue, cements, ceramics etc. These porous media are used
in many areas of applied science and engineering including
filtration, soil mechanics, petroleum engineering, bioengi-
neering etc. The static properties of porous media have been
studied intensively for many decades. However, the under-
standing of dynamic interactions of fluid with porous me-
dia remains an important area of investigation that can yield
critical and much-needed improvements to applications in
health care, environmental and various other areas of engi-
neering.

The study of vortices, their dynamics and various prop-
erties is an active and ongoing area of research [1–17].

Olcay and Krueger [18] have investigated turbulent vor-
tex rings to better understand the role of coherent structures
in turbulent flow. Bethke and Dalziel [19], and Masuda et
al. [20] have studied the collision between vortex ring and
particle layers. The dynamic of vortex rings in special types
of flow e.g. rotating fluid and cross flows by have also been
studied by Yu et al. [21] and Kelso et al. [22] respectively.

The interaction of vortex rings with solid surface has
been investigated by Xu et al. [23], Chu et al. [24], Fabris
et al. [25], and Gan et al. [26]. Lau and Yu [27] studied the
interaction of laminar vortex flow with solid walls to repro-
duce some of the features observed in turbulent boundary
layers. Couch and Krueger [28] studied the impingement of
vortex rings with inclined walls. Xu and Feng [29] studied
the effects of orifice (vortex ring generator exit) to wall dis-
tance on the evolution of vortex structures and flow fields.
Yamada et al. [30] investigated the formation and reflection
of air vortex flow against flat surface.

Although the subject areas of vortex flow and porous
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media have each been individually investigated, few if any
results exist in the open literature on the interactions of vor-
tex flows and porous media. The following section outlines
these studies with their approaches.

Naaktgeboren [31] studied the interaction of liquid (wa-
ter) vortex ring with a thin porous screen. They used a pis-
ton/cylinder vortex ring generator and the porous screens
with porosity between 0.4 and 0.8. They studied the effect of
jet Reynolds number (based on piston velocity) and also the
ratio of piston stoke to its diameter on vortex ring formation
and transmission. They used planar laser-induced fluores-
cence (PLIF) and digital particle image velocimetry (DPIV)
methods for vortex visualization and quantitative measure-
ments.

Adhikari and Lim [32] conducted experimental research
to investigate the impact of a vortex ring on solid walls and
permeable screens. He studied the effect of Reynolds num-
ber and porosity of the screens on the vortex expansion while
being impinged on a porous screen.

Hrynuk et al. [33] investigated the interaction of liquid
(water) vortex flow with stainless wired mesh porous screens
to study the effect of screen wire dimensions on the flow
behavior. The porosity of all porous screens were constant
(around 0.64), while their wire diameter varied between
0.018 cm (fine mesh) and 0.267cm (coarse mesh). They
used Laser Induced Fluorescence (LIF) method to visual-
ize the vortex disruption while passing through the porous
screens.

Changing direction from a thin porous media toward
the vortex ring propagation inside a cubical porous ob-
ject,Hassanipour et al. [34] conducted analytical research on
the effect of porous medium properties on vortex ring prop-
agation. The effect of porosity, permeability and vortex ring
impingement velocity on the flow expansion and contraction
in a porous medium was investigated numerically.

The interaction of vortex flow and porous media is on
the cutting edge of knowledge in fluid mechanics. Vor-
tex flows are inherently nonlinear and are known to display
intriguing behavior while interacting with boundary condi-
tions and various flow conditions. Porous media with their
various morphologies are also a challenging area of ongo-
ing study. When these two subject areas come together, an
even richer set of conditions emerge and display interesting
behaviors.

In this paper the dynamics of air vortex rings is con-
ducted experimentally when colliding with porous screens.
A carefully conceived experimental apparatus facilitates
precise and repeatable tests involving (dynamic) vortex
flows and porous media. To visualize the flow field, the tech-
nique of using fog as a fluid marker is selected and a CCD
camera captures the flow fields. high-precision vortex gener-
ator entirely designed and built in the PI’s lab and controlled
by a high-speed programmable controller (NI cRIO-9074),
the software for which was also developed in-house. The re-
sulting vortex ring formations and their evolution under var-
ious impingement velocities are shown. The porous screens
are constructed by acrylic transparent rods allowing to visu-

FIGURE 1. Schematic configuration of the experimental setup

alize and capture the images of the air vortex (fog) propaga-
tion through that. The effect of porosity on the transmission
of vortex ring though screens are presented. Experimental
results show the impact of both porous medium’s porosity
as well as the jet air Reynolds number on vortex ring flow
formation and transport through the porous screens.

2 EXPERIMENTAL SETUP
A schematic of the experimental set up is shown in

Figure 1. The air vortex is created by an aluminum pis-
ton/cylinder assembly. The cylinder has an outside diame-
ter, inside diameter and length equal to 1.66 in, 1.364 in and
12in respectively. The ejection-side of cylinder was given
a slope angle of 7◦ ending in a sharp rim to minimize flow
delamination at the cylinder’s edge.

To visualize the flow, a fog generator (Eliminator
EF400) was used to fill the cylinder with fog (white). The
experiment area was enclosed in black for contrast and to
minimize the effect of ambient air flow on the impinged air
vortex ring. A 10-Bit black and white CCD Camera (UNIQ,
Model UP-685CL) was used to record images of the result-
ing flow field. The full frame resolution is 659 × 494 pixels
and the camera is capable of capturing 110 frames per sec-
ond.

A high-speed programmable controller (National In-
struments cRIO-9047) was used to command a repeatable
trapezoidal velocity profile u(t) for producing precise vor-
tex flow. A pneumatic force actuator with position feed-
back combined with a proportional valve (both from En-
field Technologies) were used to provide the precise force
necessary for the piston to achieve the desired velocity pro-
file. The pneumatic actuator has a built-in linear resistive
transducer linked to the piston’s position (Fig. 3a). While
the wiper glides uniformly along the transducer, the volt-
age changes linearly, sending the command to the feedback
controller. The linear relation between voltage and position
that the transducer provides is used to determine the posi-
tion within 152 nanometers at fully filtered, sub-millisecond
sampling rates (Fig. 3b). The solid line represents the com-
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manded position velocity profile, where acceleration and de-
celeration are observed at the top and bottom of the posi-
tion graph and velocity was constant in central period. The
dashed line represents the actual position of the piston, and
as seen also in the plot, it responded well to the command.
Consecutive positions and the elapsed time reading between
these two points are used for determining the actual velocity
(Fig. 2). The time intervals can be as small as 10−6s.

The predefined trapezoidal velocity profiles in this
study are shown in Equations (1), (2) and (3) with Reynolds
numbers ReJ=700, 1800, and 3000 respectively.

U(t)(m/s) =


1.0796 t 0 < t < 0.296
0.32 0.296 ≤ t ≤ 0.889
−1.0796 t +1.28 0.889 ≤ t ≤ 1.186

(1)

U(t)(m/s) =


6.7475 t 0 < t < 0.119
0.8 0.119 ≤ t ≤ 0.356
−6.7475 t +3.2 0.356 ≤ t ≤ 0.474

(2)

U(t)(m/s) =


18.5556 t 0 < t < 0.071
1.32 0.071 ≤ t ≤ 0.213
−18.5556 t +5.28 0.213 ≤ t ≤ 0.284

(3)
Reynolds numbers are calculated based on air proper-

ties at room temperature and the maximum piston velocity
(U) and diameter of the piston (D).

The high-precision velocity profile controller produced
the initial conditions for the given experiment with a high
degree of accuracy, thus providing a reliable, repeatability
set of experimental data. This high-precision repeatability is
particularly desirable for example, when studying the effects
of varying porosity and permeability for the same selected
velocity profiles (i.e., vortices of different strengths).

The porous screens are made of a transparent wire mesh
with total surface area of 50 × 28 cm and the wire diam-
eter of 0.1cm (Fig. 4). The wire intervals distances are 1
cm, 0.5cm, and 0.25 cm respectively. This results therefore
in a screen porosity of ϕ = 0.8, ϕ = 0.6 and ϕ = 0.34, re-
spectively. A pair of acrylic sheet stands support the screen
under the piston. The stands were designed in such a way
as to allow additional porous screens to easily slide though
them horizontally, to enable future studies. The distance be-
tween the screen and the exit of the nozzle is around 10cm
and is sufficient enough to allow vortex ring evolution to be
completed before the ring reaches the bottom of the tank.

3 EXPERIMENTAL RESULTS
To understand the propagation vortex flows through

porous screens, a set of experiments were conducted for vi-
sualization of free vortex ring formation and progression.
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FIGURE 2. A typical trapezoidal velocity profile of piston and
the regarding piston position in Labview
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FIGURE 3. (a) Pneumatic Actuator and (b) Its position sensing
mechanism
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FIGURE 4. Pictures of fine, medium, and coarse wire mesh
screens (scale is in the centimeter)

Fr.= 4 Fr.= 8 Fr.= 12

Fr.= 16 Fr.= 20 Fr.= 24

FIGURE 5. Free vortex formation and evolution when Re=1800

Figure 5 illustrates a full vortex ring formation absent the
porous media when Re=1800. The vortex ring travels down-
ward symmetrically.

To be able to compare these images in equal time se-
quences while repeating the test for various Reynolds num-
bers, the time intervals were manually set on the CCD cam-
era for each Reynolds number based on the capture frame
number. The picture capturing moment is shown by Fr.
which stands for frame number. The time intervals are set
in a way that for example at Fr. = 23, vortex ring reaches
the porous screen regardless of the value of related Reynolds
number.

The three sets of time intervals are ∆t=0.033, 0.022, and
0.019 seconds for Reynolds numbers 700, 1800, and 3000
respectively. Therefore the total time for each vortex ring
ejection from piston stroke all the way to dissipation results
in: ttotal = 51×∆t.

The time frames in Figure 5 are from Fr. = 4 (vortex
formation immediately after piston ejection) toward Fr.= 24
which is the traveling distance between the outlet of the pis-
ton and the location of the porous screen. These images are
related to free vortex formation and propagation in absence
of the porous screen.

The effect of porosity on the flow behavior through the
porous medium is shown in Figure 6 for Reynolds number
Re=700. The results show that while the vortex ring passes
through the screen with large porosity (ϕ = 0.8), it barely

ϕ=0.8 ϕ=0.6 ϕ=0.3

FIGURE 6. Vortex ring interaction with porous screens for
Re=700 at Fr.=23

passes through the surface with low porosity (ϕ = 0.3). De-
creasing the porosity leads to the formation of secondary
vortices which separate from the primary vortex (the one on
upstream side of mesh screen) during the interaction. The
small amount of transmitted air also tends to reform a new
vortex downstream of the porous structure.

For the medium porosity mesh, when the primary vortex
ring reaches the porous screen, about half of the impinged
air passed through the screen and formed an unclear vortex
structure on the other side below. The remainder of primary
flow expanded along the mesh until secondary vortices ap-
peared. The high porosity screen showed weak secondary
vortex formation. The primary flow mostly passed through
the mesh and showed significant distortion downstream. The
images in Figure 6 show that the reformation of the vortex
ring after passing through the porous surface was a function
of its porosity. Primary flow is separated by the wires of
the mesh for different wire diameter. Coarse beams are pro-
duced when primary vortex interacted with the high poros-
ity screen, while very clean jet-like structures are produced
when primary vortex interacted with the low porosity screen.

The three graphs in Figure 7 show the trajectory of vor-
tex flow passing though the screens with various porosities
at the same time frame Fr. = 51. Due to the symmetric na-
ture of the vortex, only half of the piston and vortex ring is
displayed in the graphs (x=0 is center of the piston). The
horizontal and vertical axes are shown in dimensionless for-
mat and RP is the radius of the piston. As observed, the
air flow expands rapidly as soon it is ejected out of the
cylinder (x/RP < 2). After the vortex ring is formed, the
expansion in r direction almost stops around (x < 2.5RP)
and vortex ring moves downward with an almost constant
radius (x ≈ 2.5RP). Comparing these graphs shows that
for high porosity case, the trajectory of transmitted flow is
longer. Also no rolling primary vortex appears upstream of
the screen. For the medium and low porosity cases, when
primary flow reached the mesh screen, the primary vortex
partially crossed through the porous screen while the rest
expanded along the mesh surface. The resulting radius of
the secondary vortex increases with a decrease in porosity.
Also part of the primary vortex expands and keeps rolling
further on the surface. In low porosity case, more compli-
cated multiple vortices were observed.

To visualize the effect of Reynolds number on vortex
flow behavior while propagating through porous screen, and
for constant porosity of ϕ=0.8, three Reynolds number of
700,1800 and 3000 are compared. The trajectory of primary
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FIGURE 7. Vortex ring interaction with porous screen (Re=700): effect of porosity
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FIGURE 8. Trajectory of vortex ring interaction with porous screen (ϕ=0.8): effect of Reynolds number

vortex, secondary vortex and transmitted flow are shown in
figure 8, for which the same results were obtained.

As a summary, the observations reveal that porosity val-
ues have dominant affects on the vortex ring expansion, con-
traction and splitting while interacting the porous screens.
The most intriguing behavior of vortices happen while the
vortex ring interacts with a fine porous screen.
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