Engineering Conferences International ECI Digital Archives

Metabolic Engineering IX

Proceedings

Summer 6-4-2012

Development of Microbial Cell factories for Production of Biofuels and Bio-based Chemicals through Consolidated Bioprocessing

Akihiko Kondo *Kobe University*

Follow this and additional works at: http://dc.engconfintl.org/metabolic_ix Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Akihiko Kondo, "Development of Microbial Cell factories for Production of Biofuels and Bio-based Chemicals through Consolidated Bioprocessing" in "Metabolic Engineering IX", E. Heinzle, Saarland Univ.; P. Soucaille, INSA; G. Whited, Danisco Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/metabolic_ix/4

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Metabolic Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Metabolic engineering IX

June 3-7, 2012

Development of microbial cell factories for production of biofuels and bio-based chamicals through consolidated bioprocessing

Kobe University Professor, Department of Chemical Science and Engineering Director, Biorefinery Center RIKEN Institute, Team Leader, BMEP, Akihiko Kondo

Bio-refinery through CBP

Ishii J, Poster 37 : Isobutanol production

Breeding of super microbial cells(cell factory) for direct production of fuels and chemicals from biomass

Cell factories to industrially important processes

A combination of cell surface engineering and synthetic bioengineering will be a very effective approach to develop cells with novel metabolic ability for industrial applications.

Process Development

Environmentally benign and consolidated process

Bench-scale plant in Kobe University

50 kg/h presser

100 kg/batch steamer

50 L fermentation reactor

liquefaction reactor

Cell recycling system

Arming Yeast for CBP

Ethanol production from high-solid biomass

Ethanol production from high-solid biomass

Residue after high-solid fermentation

Cellulases displayed on the yeast cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases, leading to increased ethanol production.

Cell recycle fermentation of high-solid biomass

Fermentation of C5 fraction of rice straw obtained by hydrothermal pretreatment

igosacchrides			Inhibitors	
Kylose [g/L]	4.19		Acetate [mM]	46.2
Kylobiose [g/L]	1.69		Formate [mM]	28.1
Xylotriose [g/L]	15.77		Furfural [mM]	15.77
Kylotetraose [g/L]	1.10		5-HMF [mM]	1.10
Xylopentaose [g/L]	0.013			
Xylohexaose [g/L]	0.111		•	
Glucose [g/L]	0.036			
Cellobiose [g/L]	0.002		Xyi-5P Give	
Cellotriose [g/L]	0.019		C Pat	thway
Cellotetraose [g/L]	0		(Xylanase) Xylitol	
			Xylosidase	10
Total oligosaccharide [g/L]	9.62	22,00		
Total sugar [g/L]*	38.12	Xylar		

Xylooligosaccharide

Fermentation of hemicellulosic hydrolysate

A presumed inhibition mechanism

Several approaches to improve tolerance

Overexpression of TAL1 and FDH

Effect of PHO13 deletion on xylose fermentation

Hasunuma T, Poster12

Medium; YP, 80 g/l xylose Condition; Oxygen limited Temp; 30°C

Deletion of *p*-nitrophenyl phosphatase gene, *PHO13* in xylose-fermenting strain improved ethanol production from xylose

Improvement of xylose fermentation in the presence of inhibitors by *PHO13* deletion

Effects of PHO13 deletion on xylose fermentation

Fujitomi et al., 2012, Bioresour Technol

KOBE

Global gene expression analysis of ΔPHO13 mutant

Genes highly up- or down-regulated by deleting the *PHO13* gene from a xylose-fermenting recombinant *S. cerevisiae* strain

Gene	Category	Annotated function	Fold change
ZWF1		Glucose-6-phosphate dehydrogenase	4.00
SOL3		6-phosphogluconolactonase	3.67
GND1	Metabolic pathway	6-phosphogluconate dehydrogenase	1.64
TKL1		Transketolase	1.57
PFK1	(Glycolysis, PPP, Alcohol biosynthesis)	Alpha subunit of heterooctameric phosphofructokinase involved in glycolysis	1.55
TDH1		Glyceraldehyde-3-phosphate dehydrogenase	1.48
PDC1		Major of three pyruvate decarboxylase isozymes	2.04
ADH1		Alcohol dehydrogenase	1.94
GPD1		NAD-dependent glycerol-3-phosphate dehydrogenase	1.64
COX2	Respiratory chain	Subunit II of cytochrome c oxidase	0.33
СОХЗ		Subunit III of cytochrome c oxidase	0.30
CYC1		Cytochrome c	0.59
QCR6		Subunit 6 of the ubiquinol cytochrome-c reductase complex	0.57
ATP1	ATD synthese	Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase	
ATP19	ATP Synundse	Subunit k of the mitochondrial F1F0 ATP synthase	2.60
ATP5		Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase	1.64

The PHO system

Gene	Function of gene product
Pho84	Pi-transporter
Pho89	Pi-transporter
Pho4	DNA-binding trascriptional activator
Pho80	Cyclin; inhibitor of Pho4p
Pho85	Cyclin-dependent kinase; inhibitor of Pho4p
Pho5	Repressible vacuolar alkaline phosphatase
Pho8	Repressible vacuolar alkaline phosphatase

(Ohshima et al., 1997; Lu et al., 2007)

Effect of deletion of *PHO*-related genes on ethanol production

Medium; YP, 80 g/l xylose Condition; Oxygen limited Temp; 30°C

KOBE Effect of *Pho80/Pho85* deletion on xylose fermentation

— BY4741X —	ΒΥ4741Χ/ΔΡΗΟ80	ΒΥ4741Χ/ΔΡΗΟ85
-------------	----------------	----------------

Strain	Volumetric productivity (g/L/h)	Ethanol yield (g/g)	Xylitol yield (g/g)
BY4741X	0.730	0.28	0.27
BY4741X/ΔPHO80	0.844	0.35	0.15
BY4741X/ΔPHO85	0.920	0.33	0.14

Xylose fermentation is affected by the PHO metabolism.

IPA production from cellobiose

Optimization of BGL and anchor

BGL activity of Blc-Tfu0937 were improved up to 70-fold higher compared to PgsA-BglA.

Tanaka et al (2012) Appl Environ Microbiol

0.D. 600

Growth on 0.2% cellobiose using BGL-displaying *E.coli*

Blc-Tfu0937 was growth on 0.2% cellobiose O.D.600=1.05 after 20h cultivation, almost same levels of glucose

Tanaka et al (2012) Appl Environ Microbiol

Growth on 0.2% cellooligosaccharide

Successful growth on cellooligosaccharides

Tanaka et al (2012) Appl Environ Microbiol

Direct IPA production from cellobiose Using BGL-displaying engineered *E.coli*

5wt% vol cellobiose in SD8 medium

Successful IPA production from cellobiose (69 mM = 4.1 g/L)

EG activity displayed on the E.coli

EG displayed on the cell surface has CMC degradation activity

Submitted

Direct growth on CMC both BGL and EG displaying *E. coli* in the minimum medium

EG displayed on the cell surface has CMC degradation activity

Submitted

Thank you very much for your attention

Matsuda F, Poster28 Effect of metabolic inhibitors

Strategy for construction of super microbial cells

