Engineering Conferences International ECI Digital Archives

Metabolic Engineering IX

Proceedings

Summer 6-3-2012

Genomics Based Engineering for the Identification and Optimization of Bioactive Microbial Natural Products

Rolf Müller Saarland University

Follow this and additional works at: http://dc.engconfintl.org/metabolic_ix Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Rolf Müller, "Genomics Based Engineering for the Identification and Optimization of Bioactive Microbial Natural Products" in "Metabolic Engineering IX", E. Heinzle, Saarland Univ.; P. Soucaille, INSA; G. Whited, Danisco Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/metabolic_ix/3

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Metabolic Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Genomics based Engineering for the Identification and Optimization of bioactive Microbial Natural Products

Metabolic Engineering IX Biarritz, June 3-7 Rolf Müller rom@helmholtz-hzi.de

Helmholtz-Institut für Pharmazeutische Forschung Saarland

Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)

Saarland University Campus

Natural Products Research and Drug Discovery

Newman & Cragg, JNP 2012

... <u>a significant number of natural product</u> drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore we consider that this area of natural product research should be expanded significantly."

MYXOBACTERIA

- Little studied because of
- slow growth
- difficult isolation procedure
- poorly established genetics

Advantages

- new compounds
- new modes of action
- low risk of isolating known compounds

Page 4 |

Bioactive Compounds from Myxobacteria

Myxobacterial Strain Collection & Screening

Myxobacterial Strain Collection & Screening

Activity-guided screening

Re-activated

strain

Media & growth optimization

Production culture

Extract

2 HPLC fractionation of crude extract coupled to biological assays

How to find something new?

Activity-guided screening – Current status

Re-activated

strain

Media & growth optimization

Extract

Re-screening of the Myxobacterial Strain Collection -Priorization

- Activity
- Yield

Argyrin – Lead structures for antibiotic development?

- Self-resistance (microbial producer)?
- Antibacterial profile/target?
- Development of resistance?

Antimicrobial activity of argyrins A to D

Test organism		Diameter of inhibition zone [mm]			
	Α	В	C	D	
Bacillus subtilis DSM 10	0	0	0	0	
Escherichia coli DSM 498	0	0	0	0	
E. coli tolC GBF	9	8	0	0	
Micrococcus luteus GBF	0	0	-	7	
Mycobacterium phlei GBF	0	0	0	0	
Pseudomonas aeruginosa DSM1117	13	15	14	13	
<i>P. acidovorans</i> GBF	16	15	15	14	
Staphylococcus aureus GBF	7	0	7	0	
Candida albicans CBS 1893	0	0	-	-	
Hansenula anomala DSM 70263	0	0	0	0	
Metschnikowia pulcherrina DSM 70321	0	0	0	0	
Botrytis cinerea DSM 877	12	13	11	0	
Mucor hiemalis DSM 2655	0	0	-	-	
Pythium debaryanum DSM 62946	10	10	0	0	

Sasse et al, J. Antibiot. 2002

Argyrin Resistance Mechanism & Bacterial Target

1. Generation of argyrin-resistant *Pseudomonas aeruginosa* mutants

- 2. Isolation of chromosomal DNA for next-generation genome sequencing
 - 2 x Wildtype DNA
 - 8 x Mutant DNA (independent clones!)
- 3. *In silico* analysis of the genome data for resistance mutations

Mutation in Elongation Factor G confers Argyrin Resistance

Elansolids: Novel MRSA actives from Chitinophaga sancti

Elansolids A1 and A2: Stable Atropisomers with different activities

Steinmetz et al. (2011) *Angew. Chem. Int. Ed. Engl.* 50, 532. Dehn et al. (2011) *Angew. Chem. Int. Ed. Engl.* 50, 3882; Jansen et al. (2012) *Chemistry* 17, 7739

Precursor directed Biosynthesis towards novel Elansolids

Steinmetz et al. (2012) ChemBioChem in press; Jansen et al. (2012) Chemistry 17, 7739

Thuggacins from *Sorangium cellulosum* – Novel Anti-Mycobacterial Natural Products

Bock et al., Angew. Chem. Int. Ed., 2008

Thuggacins – Comparative Cluster Analysis Reveals Basis for Structural Diversity

Crotonyl-CoA Carboxylase/Reductase (Ccr)

In Vitro Studies on Generateion of the unusual Extender Unit: Reductive Carboxylation

Unusual Alkylmalonyl thioester Building blocks by CCR

Unusual Alkylmalonyl thioester Building blocks by CCR

Cinnabaramides: Potent antifungals

Key to generation of unusal extender unit: hexylmalonyl-CoA:

Rachid et al., ChemBioChem 2011

Precursor-directed biosynthesis

Biosynthetic Studies and Enzyme Engineering: Structure of CinF as 2-octenoyl-CoA carboxylase/reductase

Stereo image of quarternary structure

Asymmetric unit contains four CinF monomers in form of tetrameric dimer of dimers assembly.

Quade N and Huo L et al., Nature Chem. Biol. 2012

Biosynthetic Studies and Enzyme Engineering: Structure of CinF as 2-octenoyl-CoA carboxylase/reductase

Quade N and Huo L et al., Nature Chem. Biol. 2012

CinF: 2-octenoyl-CoA Carboxylase/Reductase

CinF: 2-octenoyl-CoA Carboxylase/Reductase

- Active site
- Substrate binding
- CO₂ binding
- Potential for engineering

Quade N and Huo L et al., Nature Chem.Biol. 2012

Precursor-directed biosynthesis

Precursor-directed biosynthesis

Proposed Biosynthesis of the cyclo-hexenylanaline of salinosporamides:

Abolishment of cinnabaramide production in S. sp JS360::cinQ mutant

Mutasynthesis in *Streptomyces sp.* JS360::cinQ⁻ mutant

SAARLANDES

Summary for all obtained derivatives

*: S. Rachid et al., ChembioChem. 2011

Page 34

Myxobacterial Genome Projects

Contigs/Scaffolds

Natural Products Biosynthesis Potential

Number of clusters

More Biosynthetic Gene Clusters than Compounds

Introducing an improved analytical platform: LC-coupled high-resolution electrospray mass spectrometry

The Strategy

Genome based Strategy to find novel Compounds

Correlating genes to metabolites: Genomics and metabolomics for the discovery process

Product family (# compounds)	Discovery method	Analytical properties	abundance	
Myxalamide (4)	genome-based	Intense yellow	very high	
Myxochromide (3)	genome-based	Intense yellow	high	
Myxochelin (2)	genome-based	UV 254 nm	high	
Myxovirescin (3)	genome-based	MS 624 m/z	fair	
DKxanthene (11)	transposon mutagenesis	Intense yellow	fair	
c506 (8) NRPS/PKS	metabolome mining	506.2713 ²⁺ m/z	low	
c844 (1) NRPS	metabolome mining	844.3742 m/z	ultra low	
c329 (1) PKS	metabolome mining	329.1861 m/z	ultra low	

First Novel Secondary Metabolite found by Metabolome Mining: Myxoprincomides

Genome Mining by Heterologous Expression

Wenzel et al., Chem. Biol. 2005

Genome Mining by Heterologous Expression

Wenzel et al., Chem. Biol. 2005 ; Fu et al., Nat. Biotech. 2012

Direct Cloning by linear DNA Homologous Recombination

natural producer

Fu et al., Nat. Biotech. 2012 highlighted in Nat. Biotech and Nat. Methods

Unknown Gene Cluster Generates Novel Lipopeptides

De novo Gene Cluster Synthesis for the Production of bioactive Polyketides/nonribosomal Peptides

Epothilone Biosynthesis

Design of an artificial Epothilone Pathway

Heterologous Epothilon Production mediated by an artificial Biosynthetic Gene Cluster

UNIVERSITÄT

SAARLANDES

DES

Functional Genomics for novel Anti-Infectives

Helmholtz Institute for Pharmaceutical Research Department of Microbial Natural Products

• HZI Braunschweig:

- Saarland University:
- TU Braunschweig:
- GeneBridges:
- Bielefeld University:
- Hannover University:
- Intermed Discovery:
- Bruker Daltonik:
- ATG Biosynthetics:

Susanne Häussler, Heinz, Nick Quade, Klaus Gerth, Helmut Blöcker, Rolf Jansen, Heinrich Steinmetz, Wolfgang Kessler, Florenz Sasse, Marc Stadler

Uli Kazmaier, Johann Jauch, Elmar Heinzle Stefan Schulz, Christoph Wittmann Youming Zhang, Francis Stewart Alf Pühler, Alex Goesmann, Susanne Schneiker Andreas Kirschning, Markus Kalesse Marc Stadler, Jens Bitzer Gabriela Zurek Hubert Bernauer

A HELMHOLTZ

7ENTRUM FÜR

INFEKTIONSFORSCHUNG

Helmholtz-Institut für Pharmazeutische Forschung Saarland

UNIVERSITÄT

DES SAARLANDES

Challenges in Developing Natural Products

- Structural complexity
- Fermentative yield
- Backbone modifications
- . . .

Structure & Yield optimization

How are these compounds made?

- Identify biosynthetic pathways (*Bacterial genomics*)
- Study biosynthesis & gene regulation

How can we engineer production?

- Manipulate the producer strains
- Express pathways in suitable hosts

... Synthetic Biotechnology

'Synthetic Biotechnology'

UNIVERSITÄT DES SAARLANDES

'Synthetic Biotechnology' – Two stories

Epothilones

Producer: *Sorangium cellulosum* Activity: Anticancer

Ptk2 cells (plus Epothilone) Ptk2 cells (control)

Bottromycins

Producer: *Streptomyces bottropensis* Activity: Antibacterial (MRSA, VRE)

Mutasynthesis in *Streptomyces sp.* JS360::cinQ⁻ mutant

Helmholtz-Institut für Pharmazeutische Forschung Saarland

UNIVERSITÄT

DES SAARLANDES

A HELMHOLTZ

ZENTRUM FÜR INFEKTIONSFORSCHUNG