Engineering Conferences International ECI Digital Archives

Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools

Proceedings

Fall 10-1-2012

Materials Design Based on Ab Initio Thermodynamics

Jorg Neugebauer Max Planck Institut

Fritz Kormann Max Planck Institut

Blazej Grabowski Max Planck Institut

Tilmann Hickel Max Planck Institut

Dierk Raabe Max Planck Institut

Follow this and additional works at: http://dc.engconfintl.org/materials_genome Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Jorg Neugebauer, Fritz Kormann, Blazej Grabowski, Tilmann Hickel, and Dierk Raabe, "Materials Design Based on Ab Initio Thermodynamics" in "Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools", J.-C. Zhao, The Ohio State Univ.; M. Asta, Univ. of California Berkeley; Peter Gumbsch Institutsleiter Fraunhofer-Institut fuer Werkstoffmechanik IWM; B. Huang, Central South University Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/ materials_genome/2

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Materials Design Based on Ab Initio Thermodynamics

Jörg Neugebauer, Fritz Körmann, Blazej Grabowski, Tilmann Hickel, and Dierk Raabe

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Department: Computational Materials Design

Point defects (vacancies): Formation energies and entropies

	AI		Cu	
	Exp.	DFT	Exp.	DFT
E _f (eV)	0.7	0.6	1.2	0.9
S (k _B)	2.4	0.2	2.3	0.3

Do we have to go beyond experiment?

Stacking fault energies (fcc Fe-Mn)

Key quantity to design novel high-strength steels

Additional complication \rightarrow magnetism

Even chemical trends are hard to derive from existing data

Ab initio computed Free energies

Approach (schematic):

Energy for any configuration/phase can be computed:

$$E_{tot}\left(\left\{\vec{R}_{I}, Z_{I}, \vec{\sigma}_{I}, f_{i}, \ldots\right\}\right)$$

 \rightarrow applicable to any system: bulk, surface, nano, ...

All possible excitation mechanisms can be described:

 \rightarrow vibrational, magnetic, electronic, chemical, ...

Statistical averages provide thermodynamic quantities:

$$Z(V,T,x) = \left\langle e^{-E^{BOS}\left(\left\{\vec{R}_{I}, Z_{I}, \sigma_{I}, f_{i}, \ldots\right\}_{V}\right)/k_{B}T} \right\rangle_{V,T,x}$$

Knowledge of partition function allows to derive any thermodynamic quantity!

MPIE, Dept. Computational Materials Design

Accuracy

Free energy:

Accuracy: Chemical Composition

Alloy formation enthalpy

Errors in the order of 10meV are often acceptable \rightarrow DFT provides reliable results

Accuracy

Free energy:

Accuracy

Free energies: What accuracy is needed?

Ab initio Thermodynamics

$$I0^{7} \text{ configurations}$$

$$A \text{ few hours}$$

$$A \text{ few hours}$$

$$Z(\hat{A}, T) = \sum_{\{\vec{R}_{I}\}_{\hat{A}}} e^{-E^{BOS}(\{\vec{R}_{I}, Z_{I}\}_{\hat{A}})/k_{B}T}$$

MPIE, Dept. Computational Materials Design

Ab initio Thermodynamics

Approach (schematic)

$$E^{\text{BOS}}\left(\left\{\vec{R}_{I}, Z_{I}\right\}\right) = E_{\sigma}^{\min} + E_{\sigma}^{\text{harm}} + E_{\sigma}^{\text{anharm}} + \dots$$

Methodological Approach

Quasiharmonic approximation + electronic excitations

- work horse for free energy studies (typically largest contribution)
- highly sensitive with respect to DFT convergence parameters
- Ref.: Grabowski et al., PRB 76, 024309 (2007).

Anharmonic contributions:

- relevant close to the melting temperature
- efficient sampling strategies (UP-TILD) boost efficiency by 4 orders of magnitude
- Ref.: Grabowski et al., PRB 79, 134106 (2009) PSS-B 248, 1295 (2011)

Magnetic contributions:

- relevant for practically all steels
- spin-quantization crucial
- Ref.: Körmann et al., PRB 78, 033102 (2008); PRB 83 (2011) Uittjewal et al. PRL 102, 035702 (2009).

Typical numerical precission for free energy: 1 meV Remaining error: xc-functional (LDA, GGA)

T=0K: Structural and Elastic Properties

Errors in LDA/GGA(PBE)-DFT computed lattice constants and bulk modulus with respect to experiment

Non-magnetic materials

 \rightarrow low and medium temperatures

MPIE, Dept. Computational Materials Design

Thermodynamic Properties of Cu

MPIE, Dept. Computational Materials Design

Thermodynamic Properties of Al

MPIE, Dept. Computational Materials Design

Thermodynamic Properties of Pd

MPIE, Dept. Computational Materials Design

Thermodynamic Properties of Rh

MPIE, Dept. Computational Materials Design

Applications

MPIE, Dept. Computational Materials Design

Magnetic Excitations

MPIE, Dept. Computational Materials Design

Vibronic excitations in bcc iron

MPIE, Dept. Computational Materials Design

Magnetic Excitations

Finite Temperature Magnetism

Application to magnetic metals

Specific heat

Free energy contributions well captured by PBE-DFT \rightarrow accurate description even of highly sensitive quantities such as c_p

Magnetization curves

Reduced magnetic moment of other transition metals

Spin QMC calculations of effective Heisenberg Hamiltonian allow ab initio description of magnetization curves of real materials (long range frustrated interactions)

 \rightarrow Hitherto achievable only by empirical (fitted) relations

Magnetization, heat capacity, free energies

F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B 83, 165114 (2011)

Heat capacity of alloys

Ab initio thermodynamics

Newly developed approaches allow to systematically improve performance of DFT to describe finite temperature properties

Accuracy often exceeds calorimetric experimental data

 \rightarrow Provide excellent basis to compute thermodynamic data

Applications

Designing high strength steels

MPIE, Dept. Computational Materials Design

Why do we need new steel grades?

Key challenge of structural materials design: \rightarrow Inverse strength-ductility relation

MPIE, Dept. Computational Materials Design

Development of Novel Steels

Steel Innovations in Cars: The New VW Passat is Leading

Load optimised use of steel (grades)

Challenges

MPIE, Dept. Computational Materials Design

Designing high-strength steels

MPIE, Dept. Computational Materials Design

Experiment

Stacking fault energies

Stacking fault energies are experimentally hard to assess \rightarrow not even qualitative trends can be derived

Figure from: J. Nakano and P. J. Jacques, CALPHAD 34 (2010) 167 Harnessing the Materials Genome, Vail, USA, Oct. 1-5, 2012

Fully ab initio description of the SFE

Combination of DFT and CALPHAD

Ab initio approach:

Both phases at same volume No empirical parameters

CALPHAD approach to SFE:

$$\gamma = \frac{2\Delta G^{\gamma \to \varepsilon}}{\rho} + 2\sigma^{\gamma \to \varepsilon}$$

Both phases at equilibrium volume Unknown empirical parameter σ

Ab initio determination of the SFE

Determination of the interface energy $\boldsymbol{\sigma}$

Conventional approach:

Ab initio determination

- \rightarrow allows assessment of exp. data
- → provides insight into relevant mechanisms
- → determination of other dependencies,
 e.g., temperature, pressure, impurities

Consequences for SFE

Discrepancy between experiments

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)
 [2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

- Discrepancy between experiments
- Simulate different scenario

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)
 [2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

- Case one homogeneous distribution of C-atoms
- Reproduce Exp.[1] (XRD-experiments)

R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)
 P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

- Case one homogeneous distribution of C-atoms
- Reproduce Exp.[1] (XRD-experiments)
- A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, Acta Mat., (2011) accepted

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)
[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

- Case two defect region is depleted of C-atoms
- Close to Exp.[2] (TEM-experiments)

R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)
 P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

A. AMRIEA Dept. Computational Materials Consignational Materials Construction of the Materials Genome, Vail, USA, Oct. 1-5, 2012

Experimental validation: SFE measurements

Verification by TEM (S. Sandlöbes and D. Raabe):

Sample:

Fe-22Mn-0.6C

MPIE, Dept. Computational Materials Design

From ab initio SFEs to hardening curves

Constitutive model [1]:

- → twin volume and three kinds of vacancies used as state variables
- →Twin-nucleation model according to Mahajan and Chin

 \rightarrow Critical twinning stress

$$\tau_{tw} = \frac{\mathbf{\gamma}}{3b_S} + \frac{3Gb_S}{L_0}$$

[1] Steinmetz, Roters, Raabe, et. al. 2011

MPIE, Dept. Computational Materials Design

Application of these concepts

Development of a new generation of high-strength steels:

Conclusions

Modern ab initio calculations are no longer restricted to T=0K and ground states

- → Newly developed approaches allow accurate computation of excitation mechanisms, free energies, heat capacities, phase transitions
- \rightarrow DFT calorimetric data often provide accuracy that is higher then exp.
- \rightarrow provide important first step to relate fully ab initio the materials genome to macroscopic properties

Heat capacity

Conclusions

Thanks to the department

MPIE, Dept. Computational Materials Design

Thanks for your attention

MPIE, Dept. Computational Materials Design