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Materials Design Based on Ab Initio Thermodynamics

Jörg Neugebauer, Fritz Körmann, Blazej Grabowski, Tilmann Hickel, 
and Dierk Raabe

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Department: Computational Materials Design

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Department: Computational Materials Design

?

Stress-strain curve

0

{ }II ZR ,
r

Free energy

Calphad

“Genome” Ab initio thermodynamics Engineering properties

?



Do we have to go beyond experiment?

Calorimetric measurements

fcc Al fcc/bcc Ca

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Fundamental input for all thermodynamic databases

→ But: Scatter of ~0.3 … 1 kB

Fundamental input for all thermodynamic databases

→ But: Scatter of ~0.3 … 1 kB

Point defects (vacancies): Formation energies and entropies

Al Cu

Exp. DFT Exp. DFT

Ef (eV) 0.7 0.6 1.2 0.9

S (kB) 2.4 0.2 2.3 0.3



Do we have to go beyond experiment?

Key quantity to design

novel high-strength

steels

Additional complication

→ magnetism 

Stacking fault energies (fcc Fe-Mn)

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Even chemical trends are hard to derive from existing dataEven chemical trends are hard to derive from existing data



Ab initio computed Free energies

Approach (schematic):

Energy for any configuration/phase can be computed:

{ }( ),...,,, iIIItot fZRE σ
rr

→ applicable to any system: bulk, surface, nano, … 

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

All possible excitation mechanisms can be described:

→ vibrational, magnetic, electronic, chemical, …

Statistical averages provide thermodynamic quantities:

Knowledge of partition function allows to derive any thermodynamic quantity!



Accuracy

Free energy:

dependence on chemical composition

dependence on temperature

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

dependence on elastic deformations



Accuracy: Chemical Composition

Hf (AxB1-x)

Alloy formation enthalpy

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

xA A

∆∆∆∆H ~ 0.1 … 1eV

Errors in the order of 10meV are often acceptable
→ DFT provides reliable results



Accuracy

Free energy:

dependence on chemical composition

dependence on temperature

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

dependence on elastic deformations



Accuracy

Free energy difference between bcc and fcc iron

fccbcc bcc

~1meV

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

empirical potentials

experiment

Energy resolution better 1 meV!
→ Can we achieve such accuracy with present

day ab initio techniques? 

Comp. Mat. Sci. 
41, 297 (2008)



Free energies: What accuracy is needed? 

Free energy difference between bcc and fcc calcium

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Target:
Numerical precision <1meV  

� remaining error purely due to xc-functional

Target:
Numerical precision <1meV  

� remaining error purely due to xc-functional



Ab initio Thermodynamics

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

107 configurations

a few hours



Ab initio Thermodynamics

Approach (schematic)

• electronic excitations:      Eel

• magnetic excitations:         Emag

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

• structural excitations
→ intrinsic defects:           Edef

→ elastic deformations:    Eelast

+ interactions between these contributions
→ electron-phonon interaction

→ magneto-volume effects

→ …

107 configurations

a few hours



Quasiharmonic approximation + electronic excitations
� work horse for free energy studies (typically largest contribution)

� highly sensitive with respect to DFT convergence parameters

� Ref.: Grabowski et al., PRB 76, 024309 (2007).

Anharmonic contributions:
� relevant close to the melting temperature

� efficient sampling strategies (UP-TILD) boost 

efficiency by 4 orders of magnitude
� Ref.: Grabowski et al., PRB 79, 134106 (2009)

PSS-B 248, 1295 (2011)

Methodological Approach

Required CPU time
(logarithmic)
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MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

PSS-B 248, 1295 (2011)

Typical numerical precission for free energy: 1 meV
Remaining error: xc-functional (LDA, GGA)

Magnetic contributions:
� relevant for practically all steels

� spin-quantization crucial

� Ref.: Körmann et al., PRB 78, 033102 (2008); PRB 83 (2011) 

Uittjewal et al. PRL 102, 035702 (2009).
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T=0K: Structural and Elastic Properties

Errors in LDA/GGA(PBE)-DFT computed lattice constants and 
bulk modulus with respect to experiment
Errors in LDA/GGA(PBE)-DFT computed lattice constants and 
bulk modulus with respect to experiment

→ Fully converged results
(basis set, k-sampling,
supercell size)

→ Error solely due to 
xc-functional

→ Fully converged results
(basis set, k-sampling,
supercell size)

→ Error solely due to 
xc-functional

→ GGA does not outperform→ GGA does not outperform

T=0 K errors are not negligible! 
→ Is there any chance that finite temperature properties are accurately predicted?

DFT is well known to interpolate/extrapolate very well (error cancellation)

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

⇒ Inspection of several xc-functionals is critical to estimate 
predictive power and error bars! 

→ GGA does not outperform
LDA

→ characteristic errors of
<3% in lat. const.
< 30% in elastic const.

→ LDA and GGA provide 
bounds to exp. data
→ provide “ab initio 

error bars” 

→ GGA does not outperform
LDA

→ characteristic errors of
<3% in lat. const.
< 30% in elastic const.

→ LDA and GGA provide 
bounds to exp. data
→ provide “ab initio 

error bars” 

DFT is well known to interpolate/extrapolate very well (error cancellation)
→ How good does this work for thermodynamic properties?



Non-magnetic materials
→ low and medium temperatures

Non-magnetic materials
→ low and medium temperatures

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Free energy
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Free energy

Phonons
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Free energy
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ApplicationsApplications

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Calcium: Heat capacity

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Magnetic ExcitationsMagnetic Excitations

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Magnetic Excitations

T > 0K

J1

J4

J2 ji
ji,

 ji,JH SS ⋅−= ∑

Construct spin Hamiltonian 
(e.g. Heisenberg model)

Typically 30 and more neighbors

have to be included!

Magnons

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Koermann, et al., PRB 78, 033102 (2008)



Finite Temperature Magnetism 

Hierarchy of approaches:

� classical Monte-Carlo (MC):

→ fails below TC

Example: Heat capacity of αααα iron

Heat 
capacity

ji
ji,

 ji,
mag JH SS ⋅−= ∑Construct and solve magnetic Hamiltonian:

from DFT

>30 neighbors

RPA

MC QMC

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

� analytical approach (RPA): 

→ only <TC

� quantum Monte-Carlo (QMC): 

→ map on eff. Hmag

→ works everywhere

MC QMC

Koermann et al , PRB 78, 033102 (2008); 
PRB 81, 134425 (2010); 
PRB 83 (2011)



Application to magnetic metals

Specific heat

fcc Ni
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fcc Co

vibronic
vibronic

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Free energy contributions well captured by PBE-DFT

→ accurate description even of highly 

sensitive quantities such as cp

fcc Ni
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Magnetization curves

Reduced magnetic moment of other transition metals

spin quantum

effects

classical

solution

(no spin

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

(no spin

discretization)

Spin QMC calculations of effective Heisenberg Hamiltonian allow ab initio 

description of magnetization curves of real materials (long range frustrated

interactions)

→ Hitherto achievable only by empirical (fitted) relations 



Magnetization, heat capacity, free energies

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B 83, 165114 (2011)
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Newly developed approaches allow to systematically improve 
performance of DFT to describe finite temperature properties

Ab initio thermodynamics

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Accuracy often exceeds calorimetric experimental data 

→ Provide excellent basis to compute thermodynamic data
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Applications

Designing high strength steels

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



Why do we need new steel grades?Why do we need new steel grades?

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Key challenge of structural materials design: 

→ Inverse strength-ductility relation

Key challenge of structural materials design: 

→ Inverse strength-ductility relation



Steel Innovations in Cars: The New VW Passat is Leading
Load optimised use of steel (grades)

Development of Novel Steels

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Hierarchical nature of structural materials

Challenges

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Designing high-strength steels
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Stacking Fault EnergyStacking Fault Energy

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Experiment

Stacking fault energies

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012Figure from:  J. Nakano and P. J. Jacques, CALPHAD 34 (2010) 167

Stacking fault  energies are experimentally hard to assess
→ not even qualitative trends can be derived

Stacking fault  energies are experimentally hard to assess
→ not even qualitative trends can be derived



� Atomic order/disorder

� Magnetism

� Temperature dependence

Fully ab initio description of the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

� Temperature dependence

� Volume/strain

� Chemical alloying



Combination of DFT and CALPHAD

Volume dependence for pure iron

CALPHAD approach to SFE:

ρ
γ

εγ →∆
=

G2

Ab initio approach:

� Both phases at same volume

� No empirical parametersDFT-GGA exp.
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MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Ab initio determination of the SFE

Determination of the interface energy σσσσ

γ = 2ρ∆Gγ→ε +2σ γ→ε

molar surface density

interface energy
→ fitting parameter

Conventional approach:

CALPHAD 

empirical value

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

empirical value
(commonly used)

Ab initio determination 
→ allows assessment of exp. data
→ provides insight into relevant 

mechanisms
→ determination of other dependencies,

e.g., temperature, pressure, impurities

Ab initio determination 
→ allows assessment of exp. data
→ provides insight into relevant 

mechanisms
→ determination of other dependencies,

e.g., temperature, pressure, impurities



Consequences for SFE

εγ →∆

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

Alireza Saeed-Akbari (RWTH Aachen IEHK)
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Effect of C on the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

• Discrepancy between experiments



Effect of C on the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)

• Discrepancy between experiments
• Simulate different scenario



Effect of C on the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

• Case one – homogeneous distribution of C-atoms
• Reproduce Exp.[1] (XRD-experiments)

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)



Effect of C on the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

• Case one – homogeneous distribution of C-atoms
• Reproduce Exp.[1] (XRD-experiments)

A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, Acta Mat., (2011) accepted
[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)



Effect of C on the SFE

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

• Case two – defect region is depleted of C-atoms
• Close to Exp.[2] (TEM-experiments)

A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, Acta Mat., (2011) accepted

[1] R.E. Schramm and R.P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

[2] P.J. Brofman and G.S. Ansell, Metall. Trans. A 9, 879 (1978)



Verification by TEM (S. Sandlöbes and D. Raabe):

Experimental validation: SFE measurements

Sample: 

Fe-22Mn-0.6C 

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012



From ab initio SFEs to hardening curves
stress-strain curve

Constitutive model [1]:
→ twin volume and three kinds

of vacancies used as state 
variables 

→Twin-nucleation model according
to Mahajan and Chin

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012

strain-hardening

→ Critical twinning stress

[1] Steinmetz, Roters, Raabe, et. al. 2011
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Application of these concepts

Development of  a new generation of high-strength steels:

MPIE, Dept. Computational Materials Design Harnessing the Materials Genome, Vail, USA,  Oct. 1-5, 2012
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Conclusions

Modern ab initio calculations are no longer restricted to T=0K and ground states

→ Newly developed approaches allow accurate computation
of excitation mechanisms, free energies, heat 
capacities, phase transitions

→ DFT calorimetric data often provide accuracy that is 
higher then exp.
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→ provide important first step to relate fully ab initio the materials genome
to macroscopic properties
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Precipitation kinetics 

Hydrogen in GBs

Hydrogen embrittlement

Stacking fault energies

F(V,T,cα, …)
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High-temperature steels
Magnetic

Gibbs energies

Hydrogen embrittlement F(V,T,cα, …)

Alloy design



Thanks to the department

CM Department (2011)
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Thanks for your attention
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