

Synthesis, Characterization and Evaluation of Sulphated Zirconias for Biodiesel Production by Triglyceride Cracking

Elizabeth J. Eterigho, J. G. M. Lee & A. P. Harvey

School of Chemical Engineering and Advanced Materials Newcastle University, UK

Bioenergy III: Present and New Perspectives on Biorefineries Lanzarote, May, 2011

Outline

- Introduction
- Motivation of study
- Objective
- Experimental
 - Results
 - Conclusions

Introduction

Biodiesel are mono-alkyl esters of fatty acids derived from natural oils. (FAMEs)

renewable,

- Carbon neutral i. e. Not adding to the global warming crisis
- it is sustainable

Conventional method

Motivation

Sulphated zirconia is:

- super-acid catalyst with acidity 10⁴ times stronger than 100% sulphuric acid
- good for organic reactions

Drawbacks:

- a relatively small surface area
- rapid deactivation and
- sulphate leaching,

Objective

The main objective of our research is to improve the catalytic activity of sulphated zirconia for high activity and selectivity towards desired products.

Two different methods of Preparation

Direct method (ds), simple calcination of ZrOCl₂.8H₂O and $(NH_4)_2SO_4$ for 5 hours at 600°C

Conventional method (cm)

- ZrOCl₂.8H₂O was hydrolysed with NH₄OH,
- Zr(OH)₄ was impregnated with H₂SO₄
- Calcination for 3 hours at 650°C.
- Characterization of catalysts

Mewcastle University Catalyst application S/Zr Gases Light olefins Analysis of Catalytic TG – liquid Light paraffins Cracking sample Biodiesel Alcohol Aromatics <u>____</u> нот Experimental

Characterization results

XRD of "cm" and "ds" catalysts

Introduction

Characterization results

Characterization results

Effect of SA and SO₄²⁻ loading on biodiesel (FAMEs) production

Properties	DS	СМ		
BET surface area (m²/g)	168.9	107		
Pore size	0.41	0.32		
(µm)				
Particle size	48.83	25.61		
(μm)				
Crystallite size	-	17.51		
(nm)				
Nature of	Α	T, M		
phases				

Introduction

Results

Wewcastle University

Results

Summary

Catalyst type	Conversion	BET surface area (m²/g)	Pore size (μm)	Particle size (μm)	Crystallite size (nm)	Nature of phases	FAMEs (%)	Acid (% B	sites %) L
DS	0.70	168.9	0.41	48.83	-	A	47.43	51	49
СМ	0.56	101	0.32	25.61	17.51	T, M	38.78	53	47
troduction	Motiva	ttion	Object	ive	Experimental	Re	sults	Co	nclusion

Conclusions

Both catalysts were active and contain ``Bronsted sites' and Lewis sites.

The morphology of "ds" contributed to it higher activity

Both catalysts were selective but "ds" exhibited higher selectivity, ~ 50% for FAMEs

However the cm exhibited a unique selectivity for saturated fatty acid methyl esters

Overall

The preparation method showed improved physical and chemical properties of the catalysts which influenced their activity observed in the yield of fatty acid methyl ester.

Biodiesel (FAMEs) can be produced by thermocatalytic cracking of triglycerides using these catalyst from both method of preparation.

Future work

•

Further improvement of the catalysts, for optimization of performance and more selectivity.

The use of non-edible feedstock

Acknowledgements

Thanks to the following for their contributions:

Dr A. P. Harvey Dr J. G. M. Lee Karen Wilson; Cardiff University

Petroleum Trust Development Fund

THANKS FOR LISTENNG

Bioenergy III

May 22 – 27, 2011

Mechanism

First is deoxygenation by thermal cracking followed by catalytic cracking, oligomerization, alkylation etc of triglycerides Mechanism

Suarez, P. A. Z. (2006) thermo- catalytic cracking of triglycerides (www.nist.gov/oiaa/)

Evidence of catalytic cracking

Conclusions

Kapilakarn and Peugtong (2007) International Energy Journal