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Biodiesel are mono-alkyl esters of fatty acids derived from 
natural oils. (FAMEs)

renewable,
Carbon neutral i. e. Not adding to the global warming crisis
it is sustainable

Introduction

Conventional method
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•European Directive of 2009/28/EC, 
proposed 10% renewable fuel by the end of 
2020. ~ 35 mtoe biofuel (i.e. 22 mtoe
biodiesel &13 mtoe bioethanol) 

Source of data : Renewable Energy Association

Motivation

Neste oil, (2008)

� Global transport fuel demand is set to rise  
by 45% in 2030.

Source  of data: Shell calculations based on IEA and PIRA data
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Transesterification Process
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Sulphated zirconia is:
� super-acid catalyst  with acidity 104 times stronger than 100%  

sulphuric acid 
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Sulphated zirconia

sulphuric acid 
� good for organic  reactions

Drawbacks:
� a relatively small surface area

� rapid deactivation and 

� sulphate leaching,
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The main objective of our research is to improve the 
catalytic activity of sulphated zirconia for high 
activity and selectivity towards desired products. 

Two different methods of Preparation

� Direct method (ds),  simple calcination of 

Objective

� Direct method (ds),  simple calcination of 

ZrOCl2.8H2O and  (NH4)2SO4 for 5 hours at 600oC

� Conventional method (cm)
• ZrOCl2.8H2O was hydrolysed with NH4OH,

• Zr(OH)4 was impregnated with H2SO4

• Calcination for 3 hours at 650oC .

� Characterization of catalysts
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Catalyst synthesis
Conventional method  “cm” 
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Catalyst application
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Characterization results
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Characterization results
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IR spectra of adsorbed  pyridine on the catalysts
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Properties DS CM 

BET surface area 

(m2/g) 

168.9 107 

Pore size 0.41 0.32 

Characterization results

40

45

50  ds

 cm

F
A

M
E

s
 (

%
)

140

160

180

 S
u

rf
a

c
e

 a
re

a
 (

m
2
/g

)

(µm)

Particle size 

(µm)

48.83 25.61

Crystallite size

(nm)

- 17.51

Nature of 

phases

A T,    M

Introduction Motivation Objective Experimental Results Conclusions

0.65 0.70 0.75 0.80 0.85 0.90

30

35

F
A

M
E

s
 (

%
)

Sulphate content in sulphating agent (wt% )

100

120

 S
u

rf
a

c
e

 a
re

a
 (

m

Effect of  SA and SO4
2-/loading on biodiesel 

(FAMEs)  production 



Results
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Results
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Summary

Catalyst 

type 

Conversion BET 

surface 

area 

(m2/g) 

Pore 

size 

(µm) 

Particle 

size 

(µm) 

Crystallite 

size 

(nm) 

Nature 

of 

phases 

FAMEs

(%) 

Acid sites

(%) 

B        L 

DS 0.70 168.9 0.41 48.83 - A 47.43 51 49 

CM 0.56 101 0.32 25.61 17.51 T,    M 38.78 53 47 
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Conclusions

Both catalysts  were active and contain ``Bronsted sites‘’ and Lewis sites.

The morphology of “ds” contributed to it higher activity  

Both catalysts were selective but “ds” exhibited higher selectivity, ~ 50% for  
FAMEs

However the cm exhibited a unique selectivity for saturated fatty acid methyl 
estersesters

Overall

The preparation method showed improved physical and chemical properties of 
the catalysts which influenced their activity observed in the yield of fatty acid 
methyl ester.

Biodiesel  (FAMEs) can be produced by thermocatalytic cracking of 
triglycerides  using these catalyst from both method of preparation.
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Future work

� Further improvement of the catalysts, for    

optimization of performance and more  

selectivity.

� The use of non-edible feedstock� The use of non-edible feedstock
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Mechanism
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Condensation

CokeCoke
Light olefins + light paraffins (gasoline) + 

CO2 +alcohol +CO +H2O
Light olefins + light paraffins (gasoline) + 

CO2 +alcohol +CO +H2O

Deoxygenation and secondary 
cracking

Heavy hydrocarbons 
+Oxygenates

Heavy hydrocarbons 
+Oxygenates

Deoxygenation and 
cracking

Vegetable Oil + 
catalyst

Vegetable Oil + 
catalyst

Polymerization

Aromatic 
Hydrocarbons
Aromatic 
Hydrocarbons

Alkylation, Isomerization and 
Aromatization

Gases (light olefins, 
paraffins, CO, CO2 +

H2O)

Gases (light olefins, 
paraffins, CO, CO2 +

H2O)

Oligomerization

Olefins + paraffins (gasoline, 
biodiesel and kerosene)

Olefins + paraffins (gasoline, 
biodiesel and kerosene)

CO2 +alcohol +CO +H2OCO2 +alcohol +CO +H2O
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