Advanced biofuels and added value products from residual quasi-homogeneous biomass: from ethanol to *drop-in* fuels

Jean-Michel Lavoie (Ph.D)

Associate Professor and Chairholder

Industrial research chair on cellulosic ethanol Département de génie chimique et géniebiotechnologique Université de Sherbrooke Sherbrooke, Québec Canada

éthanol

Biorefinery

- Comes from « bio » et « refinery »
 - Refine biological material
- Despite what we might think:
 - Biomass HAS a market
- It is diversified and complex
- Despite these facts it stills represents an

opportunity:

- Carbon content, locally available and still as important : IT IS RENEWABLE

A lesson from the master

- Oil industry:
 - Use petroleum and refines it
- The first steps of a refinery
 - COMMODITIES (fuels)
 - For which there will always be a market
 - Commodities covers for the OPEX
 - Where is the margin of profit?
 - Added value chemicals

Convert this reality

- Implementing something as a biorefinery:
 - First objective should be commodities
 - It will ensure economical viability
 - Will also cover for the OPEX of the biorefinery
- Where should be the profit?
 - Added value molécules (and it's not easy!)
- Biomass:
 - As oil: an opportunity
 - Source of renewable and « green » compounds

éthano

Biomass

- All biomasses are rich in C [45 50 wt%]
- Few biomasses have an homogeneous composition
- Homogeneity will influence «conversion strategies»
 - Biomass can be devided in three category:
 - Homogeneous
 - Quasi-homogeneous
 - Non-homogeneous

UdS – CRB Biorefining Process

Extractives

- Extraction is performed before the FIRSST process
 - Important:
 - Added value products
 - Limit the inhibitors in the aqueous mixture
 - Process Emulsification-assisted extraction
- Application:
 - Pharma/Cosmetics/Food/Gasification

éthano

P-fuels/biodiesel

C₅ sugars are hard to ferment Under acid catalyst – furfural Highly efficient 3 step process - Furfural – Furfurylic alcohol Ethyl levulinate UNIVERSITÉ DE SHERBROOKE

A biorefinery scenario

- Exemple : 1 tonne of agricultural residues (In this case triticale)
 - -221 l of EtOH (+46 l invested in p-fuels)
 - 110 l of p-fuels (biodiesel)
 - 110 | of I-fuels (bio jetfuel)
 - 25 kg of green molecules
- Energetic demand
 - -13 GJ/tonne

Energy balance

			Construction of Carl	
	Biomass	GJ	MWh	
	1 AMT residual lignocellulosic biomass	18	5.0	
	0.7 AMT non-homogeneous biomass	14	3.9	
	Total : 1.7 AMT	32	8.9	/
	Products (agricultural residues as an example)	GJ	MWh	
1	Ethanol (216 l – 167 kg)	5.1	1.41	
	P-fuels : Ethyl Levulinate (124 I – 126 kg)	3.3	0.92	
	L-fuels : Propylcyclohexane (100l – 88 kg)	3.5	0.97	
	Residual syngas		0.3	
0	Lignin derived chemicals (31 kg)		0.2	
ATT I WE AND	Total Output		3.80	
A	TOTAL EFFICIENCY 42% and up to 45%			
	UNIVERSITÉ DE			

« Negative » Carbon footprint

- The Chair's approach
 - Complete utilisation of carbon
 - Including CO₂
 - From this the biorefineries:
 - -Will only produce biofuels and green molecules
 - Three approaches are considered:
 - Thermochemical
 - Chemical

éthano

Biological approach

Acknlowledgments

My team Financial support: • – MRNF – Québec Enerkem **Greenfield Ethanol CRB** Innovations Funding agencies CRSNG AgCanada (ABIN)

éthanol