
Engineering Conferences International
ECI Digital Archives
10th International Conference on Circulating
Fluidized Beds and Fluidization Technology -
CFB-10

Refereed Proceedings

Spring 5-5-2011

Dynamics of Gas-Solids Fluidized Beds Through
Pressure Fluctuations: A Brief Examination of
Methods of Analysis
Srdjan Sasic
Chalmers University of Technology, Sweden

Marc-Oliver Coppens
Delft University of Technology, M.O.Coppens@tudelft.nl

Filip Johnsson
Chalmers University of Technology, Dept. of Energy and Environment, Goteborg , Sweden, fijo@chalmers.se

J. Ruud van Ommen
Delft University of Technology, j.r.vanommen@tudelft.nl

John van der Schaaf
Eindhoven Univ. of Technology, Lab. of Chem. React. Eng.

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/cfb10

Part of the Chemical Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Refereed Proceedings at ECI Digital Archives. It has been accepted for
inclusion in 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 by an authorized administrator of ECI
Digital Archives. For more information, please contact franco@bepress.com.

Recommended Citation
Srdjan Sasic, Marc-Oliver Coppens, Filip Johnsson, J. Ruud van Ommen, John van der Schaaf, and Stefan Gheorghiu, "Dynamics of
Gas-Solids Fluidized Beds Through Pressure Fluctuations: A Brief Examination of Methods of Analysis" in "10th International
Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10", T. Knowlton, PSRI Eds, ECI Symposium Series,
(2013). http://dc.engconfintl.org/cfb10/95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Engineering Conferences International

https://core.ac.uk/display/185670079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dc.engconfintl.org?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/cfb10?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/cfb10?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/cfb10?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/refereed?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/cfb10?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:franco@bepress.com


Authors
Srdjan Sasic, Marc-Oliver Coppens, Filip Johnsson, J. Ruud van Ommen, John van der Schaaf, and Stefan
Gheorghiu

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/cfb10/95

http://dc.engconfintl.org/cfb10/95?utm_source=dc.engconfintl.org%2Fcfb10%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages


DYNAMICS OF GAS-SOLID FLUIDIZED BEDS THROUGH 
PRESSURE FLUCTUATIONS: A BRIEF EXAMINATION OF 

METHODS OF ANALYSIS 
 
 

Srdjan Sasic1, Marc-Olivier Coppens2, John van der Schaaf3, Stefan Gheorghiu4, 
Filip Johnsson5, J. Ruud van Ommen6 

 
1 Chalmers Univ. of Technology, Dept. of Applied Mechanics, Göteborg, Sweden 
2Rensselaer Polytechnic Inst., Isermann Dept. of Chem. and Biol. Eng., Troy, NY, 

USA 
 3Eindhoven Univ. of Technology, Lab. of Chem. React. Eng. the Netherlands 

4Center for Complexity Studies, Bucharest 061942, Romania 
5Chalmers Univ. of Technology, Dept. of Energy and Environ. Göteborg, Sweden 
6 Delft Univ. of Technology, Dept. of Chem. Eng., 2628 BL Delft, the Netherlands 

 
 
 
ABSTRACT 
 
This paper revisits and critically examines a number of methods used for analysis of 
in-bed pressure signals recorded in gas-solid fluidized beds. The goal is to obtain 
information on the time scales of dominant phenomena present in the pressure time 
series of four fluidization regimes. It is demonstrated that the average cycle time 
represents an effective alternative to spectral analysis. In addition, we give evidence 
that the average cycle time yields equivalent information as some of the advanced 
methods of non-linear analysis (e.g. the Kolmogorov entropy). Finally, by using 
wavelets and wavelet packets, we show how to obtain an accurate time localization 
of the different frequency components present in the pressure signal.     
 
 
INTRODUCTION 
 
The dynamics of gas-solid fluidized beds are often characterized by investigating 
pressure fluctuations. A pressure measurement system is robust, cheap and non-
intrusive, thus avoiding distortion of the flow around the point of measurement. In 
addition, pressure is easily measured, even in industrial conditions. The in-bed 
pressure fluctuations are predominantly related to bubble motion within the bed, but 
a more comprehensive explanation on the origin of the fluctuation has already been 
debated for a long time (e.g. Kage et al., (1); van der Schaaf et al., (2); Bi (3)). The 
pressure signal has an intrinsically non-local nature, and due to this fact, the 
interpretation of pressure measurements is far more complicated than of a more 
local measurement, such as local solids concentration measurements using optical 
probes. An important aspect of any interpretation is to evaluate available techniques 
of signal analysis, related to their ability to describe the dynamics of the bed. In 
general, the techniques can be grouped into three categories: (1) time domain 
methods, (2) frequency domain methods, and (3) state space methods. It is not 
feasible to analyse in this work all methods regularly used in the literature for the 
analysis of fluidized-bed pressure signals; a broader review has recently been 



published (4). In the current paper, our aim is to demonstrate how to most 
conveniently gain fundamental information on the dynamics of fluidized beds (e.g., 
the main time scales) by using some of the commonly employed methods of signal 
analysis. Furthermore, we will critically evaluate these techniques nowadays 
frequently used and show that often some very advanced methods do not give more 
insight into the system behaviour than do some considerably simpler ones. We will 
carry out the analysis by looking into data sets for four fluidization regimes 
investigated by Johnsson et al. (5). In summary, our goal is, by calculating the main 
time scales present in the signals, to provide important recommendations on the 
suitability of the use of the methods examined. 
 
 
EXPERIMENTS 
 
The data sets applied here are the same as those used in Johnsson et al. (5). In 
brief, the experiments were carried out in a CFB unit operated under ambient 
conditions. The riser has a cross-section of 0.12 × 0.7 m and a total height of 8.5 m. 
The bed material was silica sand with an average particle size of 0.32 mm and a 
particle density of 2600 kg/m3, i.e., Group B particles. In the riser, pressure 
fluctuations were measured at 0.2 m above the air distributor through a 50 mm long 
and 4 mm ID steel tube with a fine mesh net at the side facing the fluidized bed; 
these probe dimensions in combination with the transducer minimize the distortion 
of the pressure signal (van Ommen et al., 6). The pressure is measured “single 
ended”: the fluctuations are recorded and the signals were low-pass filtered at the 
Nyquist frequency. The sampling frequency was 400 Hz in all cases, with 
33 minutes of total sampling time. The four fluidization regimes identified are: the 
multiple bubble regime, the single bubble regime, the exploding bubble regime and 
the transport regime. To obtain the multiple bubble regime, a distributor with a 
higher pressure drop was used (Johnsson et al., (5)). Note that, although the names 
of the identified regimes are not standard in the fluidization community, we have 
nevertheless used them in this work, in accordance with (5). The main conditions 
are presented in Table 1.  
 
Table 1. Operating conditions for the four pressure time-series used in this paper  
Regime condition Multiple 

bubble 
Single 
bubble 

Exploding 
bubble 

Transport 
conditions 

gas velocity [m/s] 0.6 0.6 2.2 4.1 
solids mass flux [kg m-2 s-1] 0 0 ~1 25 
bottom bed height [m] 0.40 0.37 0.30 - 
bottom bed voidage [-] 0.51 0.50 0.58 0.80* 
bottom bed pressure drop 
[Pa] 

4 960 4 730 3 310 1 120* 

distributor pressure drop 
[Pa] 

4 200 660 3 090 13 700 

*No bottom bed present, values given over the lower 20 cm of the columns 
 
THEORY 
 
As indicated above, this paper is not a full review on all the methods employed in 
the literature when analyzing pressure signals in fluidized beds. Alternatively, we 



have chosen here to discuss only the techniques that are either a most 
straightforward choice when looking at time scales of the governing phenomena 
existing in a signal, or are at present extensively used (perhaps sometimes without 
justification, as we will show here).  
 
The most common way to look at the time scales of a signal is to analyze the power 
spectrum (frequency domain analysis) and a brief explanation of the procedure is 
given here. Since the conclusions obtained by the spectral analysis may not be so 
clear in the case of non-periodic or non-smooth signals, an alternative in the form of 
the average cycle time or wavelets may be a suitable option. Finally, if we assume 
that a pressure signal from fluidized beds is non-linear in nature, it is of interest to 
characterize its unpredictability (i.e. the loss of information per unit of time). 
Accordingly, a concise description of those methods is given in this section. 
 
Spectral Analysis 
 
Fourier spectral analysis often aims at obtaining the dominant frequencies present in 
time series and assigning them to various physical phenomena (1). In the present 
paper we will use the Welch’s method (7), where the variance is reduced by 
estimating the power spectra as an average of several sub-spectra. The number of 
sub-spectra is chosen to obtain a satisfactory trade-off between frequency resolution 
and variance. Therefore, the signal treated is divided into time segments and an 
estimate of the power spectrum of each segment is obtained. An important feature 
of the spectral analysis is that the energy of the signal is conserved in the frequency 
domain. Hence, summation of the power spectra over the range of interest yields 
the total energy of the signal in a given frequency range. 
 
Average Cycle Time 
 
A suitable alternative to spectral analysis is to look at the average cycle time of the 
signal. The method belongs to the time domain analysis. It is calculated as two 
times the pressure signal duration divided by the number of times the pressure 
signal crosses its average value (e.g. 8). The technique can be sensitive to the 
presence of noise in the data, but when a low-pass filtering of the signal is applied, 
the average cycle time yields useful information. A change in the trend of the 
average cycle time typically indicates a regime change. 
 
Wavelets 
 
Wavelets allow for the representation of a signal simultaneously in time and in 
frequency. In fluidization, wavelets are used to characterize the heterogeneous 
nature of fluidization, and for the study of short-time or transient phenomena. Since 
fluidization is a multiscale phenomenon, signals measured in fluidized beds typically 
contain components on at least three frequency scales: the high-frequency scale 
associated to particle motion, the medium-frequency scale related to particle 
clusters, and low-frequency scale related to voids. We use here the discrete version 
of the wavelet transform, which is based on a pair of digital filters. The latter 
decompose the signal into a low frequency component A1 called the 
“approximation”, and a high frequency component D1 called the “detail”. The 
operation is then repeated using the approximation A1 as the input signal. By doing 



this operation recursively up to a desired level N, one obtains a hierarchical 
multiresolution representation of a signal f (Mallat, 9), such that each detail Dk 
contains frequency information in a range around fs/2k, where fs is the sampling 
frequency, and k is an integer. The inverse wavelet transform allows for 
reconstruction of a signal without loss of information. 
  
Entropy 
 
Fluid dynamics in fluidized beds are governed equations of motion with a non-linear 
nature. It is then not surprising that numerous results have appeared so far in the 
literature from applying non-linear analysis to describe various aspects of 
performance of fluidized beds, such as behaviour of bubbles and information on flow 
regimes. The methods applied are based on the construction of an attractor 
representing the dynamic evolution of the system in the state space, defined as a 
multi-dimensional space containing all the variables governing the system. An 
attractor is a clearly identified structure in the state-space domain, and probably the 
most commonly applied method for its characterization is the Kolmogorov entropy 
(also called correlation entropy or just entropy). The latter is a measure of 
predictability of a system: it expresses the sensitivity to small changes in the initial 
conditions. Linear systems have an entropy of zero and are predictable at infinitum, 
whereas random systems have an infinite entropy and are thus unpredictable. 
 
 
RESULTS AND DISCUSSION 
 
Analysis in the frequency domain most often aims at characterizing fluidization 
regimes by finding the dominant frequency at which bubbles pass through the bed.  

Fig. 1 shows power 
spectra of pressure 
fluctuations for the four 
regimes as obtained by 
the Welch method. The 
low frequency region is 
dominated by large 
structures (bubble flow), 
and, at higher frequencies, 
finer structures are 
represented. The relation 
between the two regions is 
still not clear, but it is often 
argued (5) that the fine 
structures are not primarily 
governed by the bubble 
flow. As for the analysis of 

the time scales of the signals, it is obvious that valuable information can be obtained 
from spectral analysis (e.g. the existence of the dominant frequency in the regimes 
studied). However, applying power spectral analysis to strongly non-periodic or non-
smooth signals, such as those recorded in fluidized beds, may not always turn 
beneficial. In such a case, it is useful to look at alternatives in the time domain. As 
mentioned above, an easy-to-calculate characteristic is the average cycle time. 
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Figure 1: Power spectra of the four regimes treated in 
this work. 



Figure 2 shows the average cycle time as the function of the gas velocity. It can be 
shown that, at least within the non-circulating fluidization regimes, the average cycle 

time is in effect 
independent of gas 
velocity, solid particles 
inventory and particle size. 
For the time series applied 
here, this would imply that 
the regime change, most 
likely from bubbling to 
turbulent fluidization, takes 
place at a gas velocity 
around 0.88 m/s.  
 
If we want to obtain a more 
detailed picture, we can 
plot the cycle time 
distribution instead of just 
calculating the average                      
cycle time.  Since fluidized-
bed pressure signals are 
typically non-periodic 
signals, and in the same 
time contain information at 
multiple time scales, it may 

be a good idea to use wavelets in the analysis. In this work, we have decomposed 
the signals up to the 9th level, using the discrete version of the Meyer wavelet, 
implemented in the Matlab Wavelet Toolbox. For every level k of the decomposition, 
a reconstruction has been computed using only the detail coefficients DK. The 

variance of the reconstruction 
is then proportional to the 
power of the signal in that 
particular frequency window. 
The resulting spectrum (Fig. 
3) shows that the peaks at 
low frequencies, as well as 
power-law tails at higher 
frequencies, are nicely 
recovered.  
 
However, with wavelets it can 
be difficult to interpret the 
results when the studied 
phenomenon does not reside 
exactly into one of the 
frequency bands of the 
wavelet decomposition. In 
such a case, wavelet packets 
may be used. With the latter, 
instead of decomposing only 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6
Superficial gas velocity [m/s]

A
ve

ag
e 

cy
cl

e 
tim

e 
[-]

Non-circulating
conditions

Circ. conditions
with dense
bottom bed

Transport
conditions

Figure 2: The average cycle times as a function of the 
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the approximation Ai at stage i, both Ai and Di are passed through the low- and high-
pass filters, thus producing four components: an approximation of the 
approximation, a detail of the approximation, an approximation of the detail and a 
detail of the detail. As an example, Fig.4 shows the results for the exploding bubble 
regime, with the logarithm of the coefficients plotted. Even with this representation, 

it is not straightforward 
to see a clear separation 
in frequency between 
different components of 
the signal. The 
frequencies seem to be 
mixed together, and we 
may even conclude that 
the broader bands of an 
ordinary wavelet 
analysis do a better job 
of separating them. 
Alternatively, if we 
choose to present the  

reconstructions of the signals from the coefficients plotted, we are in a position to 
recover the total time resolution. Fig. 5 exemplifies the result of the latter procedure, 
again for the exploding bubble regime. 

 
The procedure may be 
summarized as follows: we 
set all but one of the 
coefficients of the terminal 
nodes to zero. Then, the 
signal is reconstructed from 
just the coefficients of that 
terminal node. It is now 
feasible to recognize the 
various components as 
shadows in the figure.  
 
 

 
 
Finally, we will assess non-linear analysis (also called chaos analysis or state space 
analysis) in relation to the results obtained so far. State space analysis of pressure 
data in fluidized beds has been extensively used since the second half on the 
1990s. In that period, the Kolmogorov entropy has been often used to characterize 
fluidized bed-hydrodynamics. For example, Schouten et al. (10) have suggested that 
the Kolmogorov entropy is proportional to the number of bubbles per unit of time, 
and to a bubble impact factor, defined in (10) as the ratio of the diameter of a bubble 
and that of a fluidized bed. This conclusion is more valid if the signal is recorded in 
the upper part of a riser, since these fluctuations reflect the local bubble behaviour 
more that if the signal is measured in the bottom of the bed. However, there is a 
potential problem when obtaining the Kolmogorov entropy. Namely, the entropy 
should be independent of the length scale at which it is calculated, if the latter is 
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Figure 4: Logarithm of the wavelet packets coefficients 
for the exploding bubble regime. 
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chosen small enough. Such a scaling region is very difficult, if possible, to find. This 
statement then implies that the entropy analysis does not prove that fluidized beds 
indeed exhibit low-dimensional chaotic behaviour. Furthermore, we will show on the 
data sets used in the present paper that there is a strong correlation between the 
Kolmogorov entropy calculated at a specific length scale and the average cycle 

frequency (the inverse of the 
average cycle time), see Fig. 
6. Note that similar 
conclusions have already 
been suggested by Johnsson 
et al. (5) and van der Schaaf 
et al. (11). If we plot the 
entropy versus the average 
cycle frequency (Fig. 7), we 
see that the two are in fact 
linearly proportional. It can be 
demonstrated that the 
proportionality constant is 
directly related to the shape 
of the power spectrum. Since 
the average cycle frequency 
and the power spectrum are 
more easily correlated to 
physical phenomena, these 
characteristics should be 
preferred over the 
Kolmogorov entropy (or any 
similar feature from the state 
space analysis, such as the 
correlation dimension). The 
latter conclusion is further 
supported by the fact that the 
average frequency is not 
dependent on calculation 
parameters, whereas the 
Kolmogorov entropy clearly 
is. Since the application of 
non-linear analysis is typically 
more complicated, we 
recommend its use only if it 
yields information that is not 

obtainable by linear analysis, such as an early detection of non-stationarities in 
fluidized bed behaviour (12).          
 
 
CONCLUSIONS 
 
When pressure is recorded in a gas-solid fluidized bed, the obtained signal can yield 
significant information on the bed dynamics. The interpretation of signals is, 
however, not always straightforward. In this paper, we have revisited some of the 
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Figure 6: The maximum likelihood entropy and the 
average cycle frequency as functions of the gas 
velocity. The squares indicate the four data sets; 
the other markers represent the additional 
measurements at intermediate gas velocities. 

 
Figure 7: The maximum likelihood entropy versus 
the average cycle frequency for the four regimes 
investigated in the paper. 



most commonly used methods of analysis of the pressure time series. The work is 
not meant as a complete review paper. Instead, we have chosen to go through the 
techniques frequently used to obtain information on main time scales of the 
dominant phenomena present in the bed. We have shown that the cycle time and its 
distribution provide useful information on the dynamics of the bed. As such, they 
represent an easy-to-calculate alternative to frequency analysis. The latter, in 
general, provides essential information, but may be problematic when non-periodic 
and non-smooth signals are investigated.  
 
To provide information on time localization of particular frequency components in a 
signal, we have carried out the analysis using wavelets and wavelet packets. We 
have seen that the main features of the spectral analysis are adequately reproduced 
by wavelet analysis. We have used wavelet packets to obtain an unambiguous 
separation in frequency between different components of the signals. 
 
Finally, we have shown that the information given by the Kolmogorov entropy is 
entirely equivalent to that of the average cycle frequency, obtained by linear 
methods of analysis. 
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