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ABSTRACT 
Numerical studies of 3D cylindrical fluidized bed by means of combined 
computational fluid dynamics (CFD) and discrete element method (DEM) were 
carried out. For motion of particles, Newton's second law and 3D compressible 
Navier-Stokes equations in generalized curvilinear coordinates in its conservative 
form were used. Navier-Stokes equations were solved with high order compact finite 
difference scheme by fully implicit flux decomposition method. Non-reflecting 
boundary conditions (NRBC) were used for the outflow boundary.  The convergence 
of this method, especially at high Reynolds number, is significantly better than the 
SIMPLE method. 
 
INTRODUCTION 
Gas-solid fluidized beds have been widely utilized as reactors in the chemical and 
petrochemical industries. Successful design and operation of fluidized bed reactors 
requires proper prediction of the performance of reactor. Whereas experiment 
studies in these systems are quite tedious and expensive, recently modeling of 
fluidized bed reactors has been extensively used to study these systems. 
Mathematical models for modeling fluidized bed reactors can be grouped into two 
main categories: Eulerian-Eulerian (EE) and Lagrangian-Eulerian (LE) .In the EE 
model, both particles and gas phase are considered as a continuum phase (1, 2, 3 
4). Recently, many researchers (5, 6) have adopted the LE model, which is also 
called discrete element method (DEM), for modeling the phenomena in particle-fluid 
systems. Using this model, trajectories of individual particles can be traced by 
solving Newton's second law for each particle while the flow of gas, which is treated 
as a continuum phase, is described by Navier-Stokes equation. 
 
Finite volume method is usually used to solve the Navier-Stokes equation. The 
SIMPLE method with staggered grid is suitable for solving Navier-Stokes equation.  
However, using this method of solution for problems with high Reynolds number is 
typically unstable. Furthermore, implementing the high order SIMPLE method is so 
difficult in comparison with finite difference schemes. One of the finite difference 
methods that can be used for high Reynolds flow is the flux decomposition method. 
In this method, convective fluxes are decomposed based on eigenvalues which 
results in a better agreement with the physical properties of the fluid, especially at 
high Reynolds numbers. 
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Although the LE approach is more appropriate to study the hydrodynamics of 
fluidized beds. This model requires large computational resources for large scale 
systems ( 𝐿

𝐷
> 4.4𝑅𝑒1/6 must be chosen to prevent wave reflection). In recent years, 

non-reflecting boundary conditions (NRBC) were used by some researchers (7,

 

 8) to 
mitigate wave reflection problems. The concept of NRBC was proposed by 
Thompson (9) where the idea of specifying the boundary conditions according to the 
inward and outward propagating waves was introduced.  Thompson showing that 
wave reflections, and therefore, can be used as a fictitious boundary. By using this 
boundary condition, computational domain and computational time for solving 
Navier-Stokes equation is decreased. The amount of time saving depends on the 
gas inlet velocity. As the gas inlet velocity increases the free domain which is 
required for particles motion increase and therefore the effect of NRBS reduces. But 
using NRBS almost half the computational time decreases.  

In the present work, a CFD-DEM technique was used to investigate the 
hydrodynamics of a 3D cylindrical fluidized bed. Newton's second law and 3D 
compressible Navier-Stokes equation in generalized curvilinear coordinates in 
conservative form was solved for particle and gas phase respectively. In spite of 
previous studies that usually used SIMPLE method for solving Navier-Stokes 
equations, these equations were solved with high order compact finite difference 
scheme by fully implicit flux decomposition method. Using curvilinear coordinates, 
the physical domain was changed from cylindrical to semi-Cartesian coordinates in 
computational domain. Furthermore, NRBC was used for outflow boundary to reduce 
computation time. Hydrodynamics of the bed was investigated and the results were 
in good agreement with the expected behavior of gas and solids in the fluidized bed. 
 
Governing equations 
 
Equation of motion 
In the present work, the flow of sphere particles in a 3D cylindrical fluidized bed was 
investigated. Newton’s second law was applied to each particle. The translational 
and rotational motion of the particles can be described by following equations (10): 

𝑚𝑖 =
𝑑𝑉𝑖
𝑑𝑡

= 𝑓𝑓,𝑖 + ��𝑓𝑐,𝑖𝑗 + 𝑓𝑑,𝑖𝑗� + 𝑓𝑔,𝑖

𝑘𝑖

𝑗=1

 (1) 

𝐼𝑖
𝑑𝜔𝑖

𝑑𝑡
= �𝑇𝑖,𝑗

𝑘𝑖

𝑗=1

 (2) 

 
Soft sphere method ( U11 U) was used for simulation Inter-particle and particle-wall 
contact forces.  
 
For the gas phase, three-dimensional compressible Navier-Stokes equations in 
generalized curvilinear coordinates (𝜉, 𝜂, 𝜁)were written in conservative form: 
𝜕𝜀𝑄
𝜕𝑡

+
𝜕(𝐸 − 𝐸𝑣)

𝜕𝜉
+
𝜕(𝐹 − 𝐹𝑣)

𝜕𝜂
+
𝜕(𝐺 − 𝐺𝑣)

𝜕𝜁
= 𝑃 (3)  
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𝑄 =
1
𝐽

⎝

⎜
⎛
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝐸𝑡 ⎠

⎟
⎞

𝐸 =
1
𝐽

⎝

⎜
⎛

𝜌𝑈𝜀
𝜌𝑈𝑢𝜀 + 𝑃𝜉𝑥
𝜌𝑈𝑣𝜀 + 𝑃𝜉𝑦
𝜌𝑈𝑤𝜀 + 𝑃𝜉𝑧

𝑈(𝐸𝑡 + 𝑃)𝜀 + 𝑈𝑃𝑃(1 − 𝜀)⎠

⎟
⎞

𝐹 =
1
𝐽

⎝

⎜
⎛

𝜌𝑉𝜀
𝜌𝑉𝑢𝜀 + 𝑃𝜂𝑥
𝜌𝑉𝑣𝜀 + 𝑃𝜂𝑦
𝜌𝑉𝑤𝜀 + 𝑃𝜂𝑧

𝑉(𝐸𝑡 + 𝑃)𝜀 + 𝑉𝑃𝑃(1 − 𝜀)⎠

⎟
⎞

 

 

𝐺 =
1
𝐽

⎝

⎜
⎛

𝜌𝑊𝜀
𝜌𝑊𝑢𝜀 + 𝑃𝜁𝑥
𝜌𝑊𝑣𝜀 + 𝑃𝜁𝑦
𝜌𝑊𝑤𝜀 + 𝑃𝜁𝑧

𝑊(𝐸𝑡 + 𝑃)𝜀 + 𝑊𝑃𝑃(1 − 𝜀)⎠

⎟
⎞
𝐸𝑣 =

1
𝐽

⎝

⎜⎜
⎛

0
𝜀�𝜏𝑥𝑥𝜉𝑥 + 𝜏𝑥𝑦𝜉𝑦 + 𝜏𝑥𝑧𝜉𝑧�
𝜀�𝜏𝑦𝑥𝜉𝑥 + 𝜏𝑦𝑦𝜉𝑦 + 𝜏𝑦𝑧𝜉𝑧�
𝜀�𝜏𝑧𝑥𝜉𝑥 + 𝜏𝑧𝑦𝜉𝑦 + 𝜏𝑧𝑧𝜉𝑧�
𝑄𝑥𝜉𝑥 + 𝑄𝑦𝜉𝑦 + 𝑄𝑧𝜉𝑧 ⎠

⎟⎟
⎞

 

𝐹𝑣 =
1
𝐽

⎝

⎜⎜
⎛

0
𝜀�𝜏𝑥𝑥𝜂𝑥 + 𝜏𝑥𝑦𝜂𝑦 + 𝜏𝑥𝑧𝜂𝑧�
𝜀�𝜏𝑦𝑥𝜂𝑥 + 𝜏𝑦𝑦𝜂𝑦 + 𝜏𝑦𝑧𝜂𝑧�
𝜀�𝜏𝑧𝑥𝜂𝑥 + 𝜏𝑧𝑦𝜂𝑦 + 𝜏𝑧𝑧𝜂𝑧�
𝑄𝑥𝜂𝑥 + 𝑄𝑦𝜂𝑦 + 𝑄𝑧𝜂𝑧 ⎠

⎟⎟
⎞

𝐺𝑣 =
1
𝐽

⎝

⎜⎜
⎛

0
𝜀�𝜏𝑥𝑥𝜁𝑥 + 𝜏𝑥𝑦𝜁𝑦 + 𝜏𝑥𝑧𝜁𝑧�
𝜀�𝜏𝑦𝑥𝜁𝑥 + 𝜏𝑦𝑦𝜁𝑦 + 𝜏𝑦𝑧𝜁𝑧�
𝜀�𝜏𝑧𝑥𝜁𝑥 + 𝜏𝑧𝑦𝜁𝑦 + 𝜏𝑧𝑧𝜁𝑧�
𝑄𝑥𝜁𝑥 + 𝑄𝑦𝜁𝑦 + 𝑄𝑧𝜁𝑧 ⎠

⎟⎟
⎞

                       (4)  

𝑃 =
1
𝐽

⎝

⎜⎜
⎛

0
𝑆1𝐹𝜉
𝑆1𝐹𝜂
𝑆1𝐹𝜁

𝑆2�𝐹𝜉𝑈𝑃 + 𝐹𝜂𝑉𝑃 + 𝐹𝜁𝑊𝑃� + 𝑆2𝑄𝑃⎠

⎟⎟
⎞

, 𝑆1 =
𝐿∞
𝜌∞𝑈∞2

, 𝑆2 =
𝐿∞
𝜌∞𝑈∞3

, 

  
The contra-variant velocity components 𝑈,𝑉, and 𝑊 are defined as: 
𝑈 = 𝑢𝜉𝑥 + 𝑣𝜉𝑦 + 𝑤𝜉𝑧 , 𝑉 = 𝑢𝜂𝑥 + 𝑣𝜂𝑦 + 𝑤𝜂𝑧, 𝑊 = 𝑢𝜁𝑥 + 𝑣𝜁𝑦 + 𝑤𝜁𝑧 ,  (5) 
 
Other equations used in Navier-Stokes equations are introduced as follow: 

�
𝑄𝑥 = −𝑞𝑥 + 𝜀�𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧�
𝑄𝑦 = −𝑞𝑦 + 𝜀�𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧�
𝑄𝑧 = −𝑞𝑧 + 𝜀�𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧�

� (6) 

𝑄𝑃 =
1

𝑉𝑐𝑒𝑙𝑙
�ℎ(4𝜋𝑟𝑃2)�𝑇𝑃 − 𝑇�� , 𝑇� = 𝑇 × 𝑇∞, ℎ =

𝑁𝑢 × 𝑘�
2𝑟𝑃

, 𝑘� = 𝑘 × 𝑘∞, (7) 

𝐹𝜉 =
𝐹𝑥𝜉𝑥 + 𝐹𝑦𝜉𝑦 + 𝐹𝑧𝜉𝑧

�𝜉𝑥2 + 𝜉𝑦2 + 𝜉𝑧2
, 𝐹𝜂 =

𝐹𝑥𝜂𝑥 + 𝐹𝑦𝜂𝑦 + 𝐹𝑧𝜂𝑧

�𝜂𝑥2 + 𝜂𝑦2 + 𝜂𝑧2
𝐹𝜁 =

𝐹𝑥𝜁𝑥 + 𝐹𝑦𝜁𝑦 + 𝐹𝑧𝜁𝑧

�𝜁𝑥2 + 𝜁𝑦2 + 𝜁𝑧2
 (8) 

𝜏𝑖𝑗 =
𝜇
𝑅𝑒

��
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

� −
2
3
𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

� , 𝑞𝑖 = −
𝑘𝑒𝑓𝑓

𝑅𝑒𝑀𝑟
2𝑃𝑟(𝛾 − 1)

𝜕𝑇
𝜕𝑥𝑖

 (9) 

𝑘𝑒𝑓𝑓 =
𝑘�𝜀 + 𝑘�𝑃(1 − 𝜀)

𝑘∞
 (10) 

 
For solving Navier-Stokes equations with flux decomposition method, first the 
Jacobean matrices must be evaluated: 

𝐴𝑖𝑗 =
𝜕𝐸𝑖
𝜕𝑄𝑗

, 𝐵𝑖𝑗 =
𝜕𝐹𝑖
𝜕𝑄𝑗

, 𝐶𝑖𝑗 =
𝜕𝐺𝑖
𝜕𝑄𝑗

 (11) 
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By considering𝑄𝑛+1 = 𝑄𝑝 + 𝛿𝑄𝑝 Navier-Stokes equations are changed to: 

𝜀𝑛+1 �
𝜕𝑄
𝜕𝑡
�
𝑛+1

+ 𝑄𝑛+1 �
𝜕𝜀
𝜕𝑡
�
𝑛+1

+
𝜕𝐴
𝜕𝜉

𝛿𝑄𝑝 +
𝜕𝐵
𝜕𝜂

𝛿𝑄𝑝 +
𝜕𝐶
𝜕𝜁

𝛿𝑄𝑝

= 𝑃𝑛 + �
𝜕𝐸𝑣
𝜕𝜉

+
𝜕𝐹𝑣
𝜕𝜂

+
𝜕𝐺𝑣
𝜕𝜁

�
𝑛

− �
𝜕𝐸
𝜕𝜉

+
𝜕𝐹
𝜕𝜂

+
𝜕𝐺
𝜕𝜁
�
𝑛

 
(12) 

 
The Jacobean matrices are decomposed using eigenvalues (𝜆): 

𝐴 = 𝐴+ + 𝐴− 𝐴± =
1
2

(𝐴 ± 𝜆𝐼) (13) 

𝜕𝐴+

𝜕𝜉
= 𝐴𝑖,𝑗,𝑘

+ − 𝐴𝑖−1,𝑗,𝑘
+ ,

𝜕𝐴−

𝜕𝜉
= 𝐴𝑖+1,𝑗,𝑘

− − 𝐴𝑖,𝑗,𝑘
−  (14) 

 
Finally, flow field obtain by solving following equation: 

�𝐼 +
2∆𝑡

6𝜀𝑛+1 − 4𝜀𝑛 + 𝜀𝑛−1
�
𝜕𝐴
𝜕𝜉

+
𝜕𝐵
𝜕𝜂

+
𝜕𝐶
𝜕𝜁
�� 𝛿𝑄𝑝 = 𝑅𝑖𝑚𝑝 

(15) 
𝑅𝑖𝑚𝑝 = −

𝜀𝑛+1(3𝑄𝑝 − 4𝑄𝑛 + 𝑄𝑛−1) + 𝑄𝑝(3𝜀𝑛+1 − 4𝜀𝑛 + 𝜀𝑛−1)
6𝜀𝑛+1 − 4𝜀𝑛 + 𝜀𝑛−1

−
2∆𝑡

6𝜀𝑛+1 − 4𝜀𝑛 + 𝜀𝑛−1
�
𝜕(𝐸 − 𝐸𝑣)

𝜕𝜉
+
𝜕(𝐹 − 𝐹𝑣)

𝜕𝜂
+
𝜕(𝐺 − 𝐺𝑣)

𝜕𝜁
�

+
2∆𝑡

6𝜀𝑛+1 − 4𝜀𝑛 + 𝜀𝑛−1
𝑃 

 
 
NON-REFLECTING BOUNDARY CONDITIONS 
If 𝑄 is the conservative variable,𝑞 is the primitive variable and 𝑀 is the conversion 
matrix as below: 

𝑀 =
𝜕𝑄
𝜕𝑞

=

⎝

⎜
⎜
⎛

1 0 0 0 0
𝑢 𝜌 0 0 0
𝑣 0 𝜌 0 0
𝑤 0 0 𝜌 0

1
2

(𝑢2 + 𝑣2 + 𝑤2) 𝜌𝑢 𝜌𝑣 𝜌𝑤
1

𝛾 − 1⎠

⎟
⎟
⎞

, 𝑞 =

⎝

⎛

𝜌
𝑢
𝑣
𝑤
𝑃⎠

⎞ (16) 

 
NRBC in the 𝜉-direction in conservative form can be written as 
𝜕𝑄
𝜕𝑡

+ 𝐷𝑖 + 𝑀𝑏�
𝜕𝑞
𝜕𝜂

+ 𝑀𝑐̿
𝜕𝑞
𝜕𝜁

= 𝐽𝑅𝑣 (17) 

where  

𝑏� =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑉 𝜌𝜂𝑥 𝜌𝜂𝑦 𝜌𝜂𝑧 0

0 𝑉 0 0
𝜂𝑥
𝜌

0 0 𝑉 0
𝜂𝑦
𝜌

0 0 0 𝑉
𝜂𝑧
𝜌

0 𝛾𝑃𝜂𝑥 𝛾𝑃𝜂𝑦 𝛾𝑃𝜂𝑧 𝑉 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

, 𝑐̿ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑊 𝜌𝜁𝑥 𝜌𝜁𝑦 𝜌𝜁𝑧 0

0 𝑊 0 0
𝜁𝑥
𝜌

0 0 𝑊 0
𝜁𝑦
𝜌

0 0 0 𝑊
𝜁𝑧
𝜌

0 𝛾𝑃𝜁𝑥 𝛾𝑃𝜁𝑦 𝛾𝑃𝜁𝑧 𝑊⎠

⎟
⎟
⎟
⎟
⎟
⎞

 (18) 
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𝐷 = 𝑀𝑑 =

⎝

⎜
⎛
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5⎠

⎟
⎞

=

⎝

⎜⎜
⎜
⎛

𝑑1
𝑢𝑑1 + 𝜌𝑑2
𝑣𝑑1 + 𝜌𝑑3
𝑤𝑑1 + 𝜌𝑑4

1
2

(𝑢2 + 𝑣2 + 𝑤2)𝑑1 + 𝜌𝑢𝑑2 + 𝜌𝑣𝑑3 + 𝜌𝑤𝑑4 +
𝑑5

𝛾 − 1⎠

⎟⎟
⎟
⎞

 (19) 

𝑑 = 𝑃𝐿 =
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RESULTS AND DISCUSSION 
In this numerical study, a cylindrical fluidized bed with 7.5 cm diameter and 50 cm 
height, filled with 10000 particles was considered. The diameter and density of 
particles were 2 mm and 1100 kg/m3, respectively. A jet of gas was introduced into 
the bed via a central hole with jet velocity of 8 m/s (u~5umf).  
 
Fig. 1 shows snapshots of particles positions in the bed. As can be seen in this 
figure, particles that are at the center of the bed accelerate very fast and move 
vertically in the bed. The initial acceleration of the particles is so high that they travel 
almost 50 cm in the bed. This high acceleration is due to the high vertical drag force 
exerted on particles due to high gas velocity in the central area of the bed. However, 
particles in the annulus of this area do not move very noticeably in the vertical 
direction. This is mainly due to the low gas velocity in this region. The gas velocity in 
this region is low for two reasons. First, the gas is not introduced into the bed from 
near the walls. Second, wall effects induce a velocity boundary layer in which the 
gas velocity is low near the wall.  
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Fig.1. Snapshot of particle motion 

 
Over time by particles movement from distributor, the void fraction in that region 
increase and the gas velocity decrees.  Void fraction increasing in distributor center 
is more than the distributor corner. So reduction in the gas velocity in the distributor 
center holes is more than distributor corners. The gas velocity affects particles 
motion that caused to occurring two peaks in particles motion. If the simulation has 
been permitted to continue for a longer time, the transient state of the bed would 
have been vanished and a better solid flow pattern would have been obtained. Since 
the time required for the calculation is very high (around 1 month), this results has 
not been obtained yet.  
 
Fig. 2 shows velocity vector and density contour of the gas in the bed. The bed is 
divided into four sections that are perpendicular to each other to able to show the 
behavior of the flow field in 3D cylindrical bed. However, this figure shows only two 
sections of the bed. 
 
For low Mach number flows, changes in density are low, but as it can be seen in 
these figures, with upcoming the particles the density of fluid before them increases. 
Moreover, the velocity vectors in center of the cylinder are high. This flow pattern is 
in accordance with a gas flow pattern in a cylinder with boundary layer. According to 
the continuity relation, while the gas velocity increases, the density of gas 
decreases. This result shows that the presented model and the implemented method 
can predict compressibility behavior of the gas very well. 
 

t=1s t= 0.3s t= 0.1s 
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Fig.2.velocity vectors and density contour of gas 

 
CONCLUSIONS 
A combination of CFD and DEM was used to study the behavior of the high velocity 
fluidized bed reactor. The conservative form of Navier-Stocks equations in 
curvilinear coordinate was derived and used to obtain flow field of the gas in the bed. 
As described before, flux decomposition method is more compatible with high 
Reynolds numbers and high order solving methods than SIMPLE method; therefore 
in this work flux decomposition method was used for modeling high Reynolds 
fluidized bed. It must be emphasized that solving high order Navier-Stokes equations 
caused to seeing the physical behavior of the bed much better. 
 
NOTATION 

d amount of wave for each primitive Navier-Stokes equation 
D amount of wave for each conservative Navier-Stokes equations 
E inviscid flux vector (𝜉 direction) 
Ev viscous flux vector (𝜉 direction) 
fc contact force, N 
fd Damping force, N 
ff particle-fluid interaction force, N 
fg acceleration force, N 
F inviscid flux vector (𝜂 direction) 

t=1s t = 0.3 s t = 0.1s 
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Fv viscous flux vector (𝜂 direction) 
G inviscid flux vector (𝜁 direction) 
Gv viscous flux vector (𝜁 direction) 
I moment of inertia, kg m2 
J Jacobian of the coordinate transformation,  
L amount of each characteristic wave 
M conversion matrix 
q vector of primitive variables 
Q vector of conservative variables 
U contra-variant velocity(x direction), m s-1 
V contra-variant velocity(y direction) , m s-1 
W contra-variant velocity(z direction) , m s-1 
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