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BENCH-SCALE INVESTIGATION OF LIMESTONE SIZE 
EVOLUTION IN A FLUIDIZED BED COMBUSTOR 

 
Xuan Yao 1, Nan Hu 1, Hairui Yang 1*, John H. Chiu2, Pierre Gauville2,  

and Shin G. Kang2 
1 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education 

Department of Thermal Engineering, Tsinghua University, Beijing, 100084, China 
2 Boiler Combustion Systems, Alstom Power Inc., Windsor, CT, 06095 U.S.A. 

 
ABSTRACT 
   
The influence of temperature, heating rate and chemical reaction on fragmentation 
and attrition of limestone in a fluidized bed (FB) was investigated.  The intensity of 
fragmentation and attrition was measured in the same apparatus but at different 
fluidizing velocities and fluidizing media.  It was found that the heating rate has a 
positive effect on fragmentation for the tested limestones.  The effect of bed 
temperature on limestone fragmentation was inconclusive.   The influence of 
chemical reaction on the fragmentation seems to be complicated; CO2 release due to 
calcination would prompt fragmentation while the sulfation would increase the gas 
diffusion resistance and depresses the fragmentation intensity.  On the other hand, 
the CaSO3/CaSO4 layer was found to be attrition-resistant leading to small attrition 
rates.  Attrition rate constant showed to decay exponentially with time and 
approaching a constant for all limestone particles. Particle sizes between 200-400�m 
have larger attrition rate constant than coarse ones perhaps due to their large specific 
surface area.  
 
INTRODUCTION  
 
Limestone is commonly used as a desulfurization sorbent in fluidized bed and 
circulating fluidized bed (CFB) boilers to reduce SO2 emissions.  After limestone is 
added to the furnace, substantial changes in the sorbent particle size distribution, 
namely comminution, can be caused by limestone fragmentation and attrition [1-7].  
Based on previous studies, fragmentation is often classified into primary and 
secondary steps [6].  The primary fragmentation refers to the generation of 
fragments, either coarse or fine, immediately after the injection of limestone particles 
into the hot furnace [4, 6, 8, 9].  This process often occurs in the dense bed or in the 
splashing zone of either FB or CFB combustors.  The secondary fragmentation 
refers to the generation of fragments mostly from high-velocity collisions against bed 
material or reactor walls and internals.  Attrition refers to the generation of fine 
particles by abrasion and depends upon the resistance of the bed particles to surface 
wear.  Size evolution caused by fragmentation and attrition is strongly coupled with 
the calcinations and sulfation processes as well as the overall mass balance in the 
CFB system.  Thus, factors impacting fragmentation and attrition play important 
roles in the boiler performance.  
 
Previous studies have investigated the impact of limestone type and size 
[2,4,7,10-13], fluidizing gas velocity [6,8,9] and temperature [7,14] on fragmentation. 
For a CFB boiler, scholars also found that fragmentation is influenced by the solids 
circulation rate [2,3,8] and by the inventory of inert bed material [13-14], etc.  
However, an investigation on the effect of chemical reaction, especially sulfation, on 
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limestone fragmentation is an issue of practical significance.  In addition, the impact 
of particle size, temperature and heating rate on fragmentation remains a 
controversial topic in the literature [7,14].  Therefore, the aim of this work was to 
conduct a systematic study of limestone fragmentation and attrition in the FB reactor 
in order to further explore some of these factors.  
 
A set of experiments on the primary fragmentation and attrition of two different 
limestones was conducted in this study.  The effects of heating rate, temperature 
and initial particle size of the limestone were studied.  Different fluidizing media (air, 
SO2, CO2) were used in the experiment to study the influence of calcination and 
sulfation on fragmentation and attrition behavior.  The jet effect near the distributor 
was not studied. 
 
EXPERIMENTAL 
 
The bench-scaled fluidized bed reactor used in this study was described in detail 
previously [15].  The reactor was a round tube made of silica glass, with an inner 
diameter of 54 mm and height of 800 mm.  The reactor was electrically heated and 
the main section could be maintained at a desired temperature with a deviation of 
±5oC.  An air distributor (a porous plate type) was placed near the middle of the 
reactor.  The section below the distributor was used to preheat the fluidizing gases.  
During the fragmentation experiments, inert bed material, i.e., quartz sand (90-125 
�m) was pre-laid on the air distributor.  The limestone was then added in batch mode 
(20 g), with a particular initial size cut, and mixed with the quartz sand.  The initial 
static height of the bed material was kept at about 40 mm for all tests. 
 
A rather low, superficial gas velocity, Ug, was set for the tests at about 0.1-0.2 m/s, at 
a reactor temperature of 850oC, to minimize the attrition and secondary fragmentation.  
Thus, all of the fragments formed could be attributed to the primary fragmentation.  
After the limestone was added into the reactor for a prescribed time interval, all of the 
materials, including limestone fragments and bed material, were aspirated out and 
collected by a solids collection system.  The bed material was then separated from 
the collected mixture by a sieve shaker, and the particle size distribution (PSD) of the 
residual fragments was obtained by sieving and weighing.  The mass of the 
fragments in the size range of the inert bed material (90-125 �m) was estimated by 
measuring the weight loss during calcination in a muffle furnace.  

  
As in a previous study [16], the coefficient of average particle size variation, Fd, was 
used to characterize the degree of particle size change, which can be expressed as 
Fd = df/do, where df is the average Sauter diameter of new PSD and do is the average 
Sauter diameter of the particles in the original sample.  For purposes of discussion, 
another parameter called the fragmentation intensity coefficient (FIC), defined as FIC 
= 1 - Fd, was introduced to describe the intensity of fragmentation.  The FIC can vary 
between zero (no change in particle size) and near unity (denoting a substantial 
decrease in particle size). 

 
To measure the attrition rate by abrasion, a relatively high Ug (e.g., Ug

� 0.5 m/s) was 
used such that fines with a diameter less than 80 �m, generated by attrition, could be 
elutriated and then collected by the solids collection system.  Before the adding of 
the testing sample, a certain amount of bed material of quartz sand (~160 g, 250-300 
�m) was pre-loaded in the reactor.  The quartz sand was abrasion resistant and 
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Figure 1. Fragmentation intensity coefficient 
(FIC) of limestones A and B under air 

atmosphere in FB (850°C)

remained in the reactor under the selected Ug.  The bed was put into operation with 
a preset Ug and bed temperature for a prescribed period until it was steady.  The 
testing sample, with a mass of 50 g, was then added to the bed.  At 10 minute 
intervals, the attrition rate, Rs, was obtained [1] by weighing the fine particles collected 
in the cyclone with a total sampling time of about one minute duration. From these 
data, the attrition rate constant, Ka, was calculated.  The experiment was continued 
until the attrition rate became steady. In this study, the influence of chemical reaction 
was also evaluated by changing the fluidizing media. Limestone was first calcined in 
the FB for 10 minutes under an air atmosphere; and then different mixtures of CO2                                                          

and SO2 were subsequently used to study the influence of sulfation.   
 

Two kinds of limestone (types A and B) were studied.  The CaCO3 and MgCO3 
compositions measured by x-ray diffraction are listed in Table 1. Each limestone was 
classified into 3 size groups of 200-400 �m, 400-600 �m, and 600-800 �m in order to 
study the effects of the initial particle size. 
 

Table 1.  The composition of the limestone samples (% in mass) 
Sample Ca Mg CaCO3 MgCO3 Other 

A 39.4048 - 98.51  - 1.49 
B 38.5512 0.7811 96.38  2.73  0.89 

 
RESULTS AND DISCUSSION 
 
Effect of Limestone Type and Original Size  
 
Figure 1 shows the FIC of both limestone types 
at a temperature of 850ºC under an air 
atmosphere in the FB furnace.  A higher FIC 
value represents a higher fragmentation intensity 
and a smaller average particle size produced.  
For both limestone types, the enhanced 
fragmentation of the tests with a larger initial 
particle size classification is apparent.  
However, a previous experimental study [15] 
indicates that the effect of particle size on 
fragmentation is not always the same, and depends 
on the limestone type. The micro-structure of the 
particles could be very different for different limestone samples and could cause 
significant differences in fragmentation and attrition [8].   In this study, it is believed 
that the impact of the particle micro-structure, combined with other effects such as 
heating rate, could be the reason for the ambiguous effect of initial particle size. This 
phenomenon should be studied in more detail in future research. 

 
Effect of Temperature on Fragmentation 
 
In order to study the influence of temperature on the fragmentation of limestone, a 
test was conducted under different temperatures (850 and 900ºC) in the FB reactor.  
Figure 2 and Figure 3 show the changes in the cumulative particle size distributions of 
limestone A with different initial sizes.  The data appears to indicate, albeit not 
conclusively, that the average particle size dS increases with temperature except 
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Figure 5 Effect of heating rate on the PSD
 of fragmentation product (B. 400-600 µm)

Figure 4 Effect of heating rate on the PSD
 of fragmentation product (A. 400-600 µm)
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Figure 2. Effect of temperature on the PSD 
of fragmentation product (A, 400-600 �m)
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Figure 3. Effect of temperature on the PSD 
of fragmentation product (A, 600-800 �m)

sizes between 400-500�m. Other study [14] showed that high temperature enhances 
the attrition of particles but lessens the primary fragmentation.  The author explained 
that enhancement of CO2 release at high temperature is not strong enough to prompt 
increased fragmentation in the bed. More studies are necessary in the future.   

 
 
 

Effect of Heating Rate on Primary Fragmentation 
 
In order to simulate the effect of heating rate on the primary fragmentation of 
limestone, various experimental conditions were used.  In Figures 4 and 5, FB refers 
to the baseline operational condition, C refers to the calcination of limestone in the 
reactor without inert bed material (silica sand), and FB-H refers to the introduction of a 
higher limestone weight (50g) to decrease the heating rate in the FB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figures 4 and 5, compared with the initial limestone particle size, lime 
calcined under FB condition is much finer than that of lime PSD obtained under the ‘C’ 
experimental condition.  Under the ‘C’ experimental condition, where no inert bed 
material was used, the thermal heating rate was mainly caused by radiation from the 
wall and convection of high temperature gas, which induced a smaller heating rate 
than that provided by silica sand bed.  Therefore, the heating rate could enhance the 
fragmentation of the limestone, especially for limestone B.  The relative contribution 
of the higher heating rate on fragmentation, provided by the silica sand particles, is 
difficult to quantify, because it is coupled with the mixing-induced attrition caused by 
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Figure 6 Fragmentation intensity of limestone A
 with SO2 atmosphere
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the purely mechanical stresses of the sand particles on the limestone. 
 

The comparison between the PSDs from the FB and FB-H conditions also illustrates 
the promotion of thermo-mechanical and chemical effects by the heating rate on the 
primary fragmentation intensity.  Limestone is calcined into lime in the furnace 
(endothermic process) and at the same time experiences thermal stresses as it is 
heated up.  The time required for complete fragmentation is about 4 to 6 minutes 
longer for the larger sample weight (FB-H).  But the effect of such a small difference 
on attrition and particle size evolution is probably negligible.  Because the output of 
the electrical furnace is constant, less limestone sample means a higher heating rate.  
In general, an improved heating rate can enhance calcination and prompt primary 
fragmentation.  Therefore, as shown in Figures 4 and 5, the fragmentation product 
size of FB-H is less than that of FB condition. 

 
Effect of Fluidizing Media on Fragmentation  
 
The product gas from industrial CFB boilers is composed of CO2, SO2, NOX, etc. 
These gas species may have a great impact on limestone fragmentation in the boilers.  
Previous studies have found that the existence of a high CO2 concentration will 
suppress the calcination and fragmentation of limestone [9,15,16]. SO2, calcined lime 
absorbs SO2 to form CaSO3/CaSO4, which may also suppress fragmentation. 

 
Figures 6 and 7 show FIC values of two kinds of limestone under different 
atmospheres at a reactor temperature (850°C).  It’s obvious that the SO2 
suppressed the fragmentation of both kinds of limestone under the conditions used in 
this study, at least for the larger particle sizes 
 
Both limestone types have the largest fragmentation intensity under an air 
atmosphere.  The possible reason may be that fresh lime on the surface of the 
particle reacted with SO2 and produced a harder, attrition-resistant layer of 
CaSO3/CaSO4 product over the particle surface and may hinder the CO2 release.  
Figure 8a shows CO2 concentration variation during the fragmentation process under 
different fluidizing media.  The release of CO2 is faster with air initially as comparing 
to the SO2 atmosphere. But with the uncertainty of reading in low value the trend 
seems reversed later. Figure 8b shows the accumulated CO2 released (normalizing 
to 100%). As shown for the same percent of calcinations completed, fluidizing media 
with air requires less time than that with SO2 case. This seems to confirm the 
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Figure 8b Normalized CO2 concentration accumulated 
during fragmentation process (A, 400-600mm)

suppressing effect of the SO2 on CO2 release. On the other hand, the variation of SO2 
concentration has no obvious impact on the FIC of limestone with short time duration. 
The sulfation reaction of CaO and SO2, as a relatively long duration process, will take 
hours to complete.  Therefore, during the short time of primary fragmentation, the 
variation of SO2 concentration from 800 ppm to 2000 ppm may have no appreciable 
effect on the thickness of the layer and subsequently on the FIC.    

Generally, three mechanisms are attributed to the 
limestone fragmentation: thermal stress at high 
temperature, high internal pressure caused by 
organics or water evaporation and the CO2 release 
during calcination [5]. Calcination is a chemical 
reaction process that will produce CO2 and lime 
(CaO).  At a certain temperature, calcination 
reaction occurs only if the partial pressure of CO2 in 
the environment is lower than the CO2 pressure at 
chemical equilibrium  [9,18].  The existence of 
high CO2 concentration in the environment will 
suppress the calcination reaction [16].  As shown in 
Figure 9, fragmentation was suppressed under an 
atmosphere of 15% CO2+2000 ppm SO2, as evidenced 
by the fact that the size change of limestone was insignificant.  
The results further confirmed the contribution of the 
calcination reaction to the fragmentation of 
limestone. 

 
Effect of the Sulfation on Attrition of Limestone 
 
The degree of (secondary) fragmentation that can 
be attributed to sulphation processes other than 
calcinations and rapid gas release is trivial.  Thus, 
comminution of lime and its sulphate products is 
mainly attributed to attrition by abrasion [6].  
Attrition by abrasion generates fine particles that are 
quickly elutriated by the high fluidizing gas velocity 
and collected by the cyclone at the outlet of furnace.  
The average size of the product remaining in the 
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reactor after the attrition process is finer than with the primary fragmentation product, 
except for particle 450 �m as shown in Figure 10.  In this study, the attrition process 
lasted for about 150 minutes at a temperature of 850°C and a fluidizing velocity of 0.5 
m/s in the FB reactor.  

 
Figure 11 shows the change of Ka for limestone A with three initial particle sizes. Ka is 
found to decay exponentially with time, and then approaches a constant (K�).  
Regardless of the initial value of Ka for limestone, finer limestone samples less than 
400 �m eventually have a higher K�. The attrition rate constant of K� for particles 
larger than 400�m shows small difference.  Finer particles have a larger specific 
surface area for the same inventory and may experience more abrasion.  

 
The influence of sulfation on the attrition of limestone and its products was shown in 
Figure 12 for limestone sample A.  After the limestone was calcined in the FB for ten 
minutes under an air atmosphere, the fluidizing gas was switched to a mixture of air 
and SO2.  The attrition rate of the sample under an SO2 atmosphere was found to 
exhibit a trend that was similar to that under an air atmosphere in size effect up to a 
factor of 2. Similar to other studies [6,8], the higher SO2 concentration produces lower 
K� due to more attrition resistant. 
 
CONCLUSION 

 
Two limestone samples were selected and tested in a bench-scale bubbling fluidized 
bed reactor under various conditions to study the limestone fragmentation and 
attrition.  Experimental results confirmed that fragmentation and attrition could be 
significantly affected by limestone type, initial size, heating rate, fluidizing media, and 
temperature.  The average size of the particles decreased during the fragmentation 
process.  The heating rate and mechanical collision in the FB have been found to 
enhance the fragmentation, while the temperature seems to have negative effect on 
fragmentation.  Sulfation reactions suppress the fragmentation of limestone due to 
the gas diffusion resistance of the CaSO3/CaSO4 layer.  The layer of CaSO3/CaSO4 
surface is attrition resistant. The sulfation reaction leads to a smaller attrition rate of 
limestone products under an SO2 atmosphere than under an air atmosphere. 
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NOTATION 
 
Ug  gas superficial velocity in tube, ms-1  Ra attrition rate, kgs-1      
Ka  attrition rate constant, m-1     K�  final attrition rate constant, m-1  
do  average Sauter mean diameter of the original PSD, µm   
df  average Sauter mean diameter of the new PSD, µm 
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