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ABSTRACT 

The loop seal aeration effect on the supply side has been studied through small 
scale CFB experimentation. Parameters affected include inventory allocation and 
entrainment. The gas velocity in the standpipe is influenced by loop seal aeration 
and riser velocity. Variation in slugging behavior above and below solid downflow 
velocity of 0.025 m/s is analyzed and discussed here. 
 
INTRODUCTION 

Circulating fluidized bed (CFB) technology is used in 
various applications including combustion of solid 
fuels for electricity production (1). Recently, it has 
been applied in the field of solid looping cycles 
aiming at CO2 capture, such as calcium looping (2), 
and chemical looping combustion (3). For 
combustors standalone CFB’s are used, while for 
solid looping cycles dual fluidized bed (DFB) systems 
are utilized. In both cases the standpipe-loop seal 
arrangement is an important component. A typical 
standalone CFB consists of a riser, cyclone and 
standpipe-loop seal arrangement, shown in Fig. 1. 
The loop seal acts as a solid pumping device from 
the low pressure cyclone to the high pressure riser 
and ensures that riser gas does not take the short cut 
through the cyclone. In comparison, DFB systems 
consist commonly of two CFBs or a CFB and a BFB, depending on the facility 
purpose (2). In this case the role of a loop seal is to transfer solids from the low 
pressure cyclone of one reactor to a high or low pressure point of the other reactor, 
while disallowing gases from one reactor to enter the other. In both cases, 
standpipe-loop seal operation is indispensible. Solid downflow, within the standpipe 
and loop seal occurs in three modes as explained by Knowlton (4). Moving bed 
mode, bubbling fluidized mode are possible below the level of the particle bed, Lst. 
Above this level solid flow occurs in dilute mode. A bubbling or moving bed  

 

Figure 1- Stand alone CFB  
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Loop seal aeration flow path determination 

The data evaluation procedure is based on Basu & Cheng (7) and has been applied 
for every steady state. Goal of the analysis, presented in steps, is to define the gas 
flow path through the loop seal.  

(i) Calculation of the standpipe slip velocity  

The slip velocity ( ), expresses the relative velocity between gas and solid within 

the standpipe and is calculated through Eq.1. The pressure drop through the 
standpipe (  and the particle bed height ( ) have been measured for every 
steady state, thus defining also the pressure gradient Δ .The ∆  is measured 
from the bottom of the loop seal to the bottom of the cyclone. Althought the areas of 
standpipe and loop seal vary, but for simplification the Δ is assumed to be 
constant and further calculations of gas and solid velocity are based on the area of 
standpipe. The voidage (ε) value, for packed bed column found to be equal to 0.48 
and at minimum fluidizing conditions (εmf) is found to be 0.54. However the exact 
voidage while standpipe operation is difficult to estimate. Therefore an average 
voidage of 0.51 is considered for calculation. Eq.1 has been applied only when the 
fluidization regime in the standpipe was moving bed. The situations in which this 
standpipe showed bubbling or slugging mode of fluidization are not considered in 
the calculations. The sphericity of the particles ( ) has been taken as 0.75 from 
voidage-sphericity graphs in (6).   

(ii) Calculation of the real solid downflow and gas velocity 

The real solid downflow velocity ( ) and gas velocity ( ) is calculated through Eq. 
(2) and Eq. (3). The  and  are positive in the downwards direction. The   is 
defined through measurement of the riser entrainment, based on the standpipe 
cross-section ( ). The real standpipe gas velocity ( ) is subsequently calculated 
through Eq. 3, which is the definition of the slip velocity. The superficial gas velocity 
( ) in the standpipe is calculated from the voidage.   

(iii) Calculation of loop seal aeration split 

The flow travelling through the particle column in the standpipe ( ) is given by 
Eq.4. If ( ) is positive than the loop seal aeration flow is split between the loop seal 
supply chamber-standpipe and the recycle chamber-riser. This split is quantified with 
the ratio of Eq.5 and is defined as the fraction of total volumetric flow of the loop seal 
aeration ( ) entering supply side ( ) or the recycle side ( ) of the loop seal. The 
aeration split in the supply section is calculated using Eq.5 and the recycle side 
given by Eq.6. If the   is negative, the gas flow from the cyclone is carried 

∆
Δ 150 1

| |
1.75 1

| |  (1) 

 

1
 (2)  (3) 
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The aeration split increases with 
increase in  and is calculated from -

8% to +6%. Up to 6% of the aeration 
gas is entering the standpipe. This 
concludes that remaining 94-100% of 
the aeration gas is entering the recycle 
chamber. In case of negative  
additional gas is entering the recycle 
side of the loop seal. If the calculated 
aeration in the recycle side is in the 
range of 2-6  and enough to keep 
the recycle side of the loop seal 
fluidized. Therefore the loop seal 
worked well even without the aeration in 
the recycle chamber.  

The deviation bars in Fig.5 and Fig.6 
show the influence of voidage in the 
calculations of  and aeration split. The 
lower deviation shows the value at a 
voidage of 0.48 and the upper deviation 
shows the value of voidage 0.54 close 
to . As observed the voidage can 
affect the results significantly. As 
discussed earlier, the assumption of a 
constant Δ , despite the two different 
standpipe cross-sections, holds true to a 
limited extent. Therefore, to find out the 
exact gas flow pattern would implicate 
the use of tracer gases. Johansson et al 
(3) reported aeration split values of 2 to 
7 % using tracer gases. In that work, for 
a separate downcomer of the same 

facility  values of -0.05 m/s to + 0.1 m/s were recorded. Hence the results 
reported in this section are comparable with the data of (3). 

Slugging in the standpipe 

Fig.5 and Fig.6 show that the increasing loop seal aeration increases the gas 
velocity in the standpipe. At low or negative gas velocities the standpipe was in 
moving bed mode. With increasing aeration in the loop seal a stage is reached when 
bubbles start to appear in the standpipe. The bubbles could be equivalent to a 
standpipe diameter in such small standpipe used in this study. This situation is 
commonly referred as slugging, common phenomenon for such small scale units. 
Two types of slugging have been described by Wen (5). Type A- Round nose 
slugging and Type B - Flat nose slugging. The Type A is similar to normal bubbling 
bed where bubbles rise up in fluidized bed. The difference compared to bubbling 
bed is that a gas slug is nearly equal to the standpipe diameter. Typical Type B  

 

Figure 5 – Effect of loop seal aeration on 
gas velocity in standpipe ( ) at different 
riser velocities  (TSI =2.9 kg) 

 

Figure 6 – Effect of loop seal aeration on 
the aeration split   
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NOTATIONS 

 m² Standpipe area  m/s Real gas velocity in the 
standpipe 

 m Particle diameter  m/s Gas velocity in loop seal 
 kg/m2s riser circulation rate m/s Slip velocity  

Δpi mbar, Pa Pressure drop in a 
given CFB section i 

 m/s Real solid velocity in the 
standpipe 

 m/s Riser superficial 
velocity 

 m/s Minimum fluidization velocity 

  m/s Superficial gas velocity 
in standpipe 

  m³/s,  Volumetric flow rate 

Greek symbols 
   

ε  Voidage ρg kg/m³ Gas density 
µ Pa.s Gas viscosity ρs kg/m³ Particle density 

  Sphericity    

Abbreviations 

CFB Circulating fluidized bed St Standpipe 
DFB Dual fluidized bed TSI Total solid inventory 
LS  Loop seal   
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