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ABSTRACT  
 
The gas flow field in a short residence time separator was investigated. The 
tangential velocity in the separator housing increases with increasing angle to the 
positive x axis, and decreases with increasing radial position. A swirl of opposite 
direction to the main current in the separator housing occurs in the gas outlet. 
 
 
INTRODUCTION 
 
Gas-particle separators play a key role in a gas-solid fluidized bed by effectively 
collecting and recycling particles. Over the years, collection efficiency and pressure 
drop have been considered as the most important characteristics of a gas-particle 
separator (1-3). However, more concerns should be made when a separator is 
employed in a specific industrial process in which the reaction time is elaborately 
controlled, such as in the fluid catalytic cracking (FCC) process. Preferably, catalytic 
cracking reactions only occur in the riser reactor, which usually takes 1 to 5 s (4). 
Further contact of the highly active cracking catalysts and the cracked hydrocarbon 
vapor in the separator and the dilute phase is harmful, causing unwanted side 
reactions and byproducts (5-6). The catalysts are separated from the vapor at the 
end of the riser reactor, and the post riser reactor residence time is critically restricted. 
This is defined as the time the cracked hydrocarbon product remains in the 
separators and the dilute phase. A conventional scheme consists of multiple stage 
separators, usually a riser termination device and a cyclone. It provides high 
efficiency gas-solid separation, but allows a long and uncontrolled hydrocarbon 
post-riser residence time of 15-45 s in the separators and the reactor dilute phase, 
which significantly exceeds the time required by catalytic cracking reactions (4). 
Work associated with reducing post-riser residence time has been rare, mainly 
focused on the reduction in residence time in the separators and in the reactor dilute 
phase.  

Gas-solid separators can be roughly categorized into centrifugal separators and 
inertial separators. A common and traditional centrifugal separator is the cyclone, 
which provides high separation efficiency, but allows relatively long contact time of 
gas and particles. Typical inertial separators are T-type ballistic riser terminators, 
which offer rough separation efficiency of approximately 60%. Recently, some novel 
short residence time separators (SRTS) have been proposed. Donsí et al (7) 



 

presented a horizontally placed inertial riser terminator with a U-bend channel. 
Pictures and video show a particle-rich layer occurring within the first 60° of the 
separator circumference, indicating a rough separation of the gas-particle 
suspension. With increasing inlet gas velocity, the collection efficiency approximately 
remains constant (nearly 100%) for the high mass flow rate ranging from 260 to 340 
kg/m2·s, but significantly decreases for the low mass flow rate less than 90 kg/m2·s. 
The retention time of the separation is only 4 ms. Andreus et al (4) presented a 
horizontal short contact time separator. In the separator, the gas-particle is 
centrifuged in a half-turn elbow, with particles moving downwards through the dipleg 
and gas exiting from a gas outlet horizontally located on the center of the separator 
head. Results show that the particle collection efficiency increases with increasing 
inlet solid loading and reaches an asymptotic value close to 95%. Variation of the 
back pressure exerted on the outlet of the dipleg has a slight influence on the particle 
collection efficiency, but a significant effect on the gas collection efficiency. A modified 
cyclone model was employed for prediction of the particle collection efficiency. 
Letzsch et al (5) and Joseph et al (6) proposed a novel separator called a rams horn, 
which combines centrifugal with inertial separations. The ram horn separator 
contains an upward flowing suspension inlet, a downward flowing solids outlet, a 
horizontally flowing gas outlet and a semi-circular separator area. The gas outlet 
extends through the separator housing and contains a horizontally disposed gas 
opening. Gas-solid suspension enters the SRTS vertically upwards and is then 
centrifuged in a half-turn elbow. Particles segregate at the concave wall of the 
separator housing and move vertically downward from the solid outlet, while the gas 
is withdrawn through gas openings on the gas outlet. The ram horn separator 
provides a number of significant potential advantages: small size, simple 
configuration, high collection efficiency, low pressure drop and short gas residence 
time. This work evaluates a novel ram horn-type short residence time separator with 
multiple gas openings uniformly disposed on the gas outlet.  
  
MODEL DESCRIPTION 
 
Mathematic Models 
 
The flow field in a SRTS is characterized by a strongly swirling flow and anisotropic 
turbulence. The k-ε model, algebraic stress model (ASM) and Reynolds stress model 
(RSM) have been commonly employed in flow field simulation, but the RSM provides 
a more precise estimation on the strongly swirling flow and anisotropic turbulence (1). 
The governing equations of the continuous phase can be written as 

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂j φ
j j j

φ(ρφ ) (ρu φ ) (Γ + φ) S
t x x x

              (1) 

where φ is a universal variable, Гφ is the transport coefficient, Sφ is the source item. 
The expression of φ, Гφ and Sφ in different equations is listed in Table 1, where 
σk=0.82 and σε=1. The inlet boundary was set as the uniform velocity inlet, and the 
turbulence quantities were also uniformly imposed on the inlet by using the 
correlations: kin=3/2(uinI)2, and εin=Cμ

0.75k1.5/l, where I = 0.05, Cμ=0.09, l =0.07 DH, and 
DH = 0.108 m. The boundary condition at the gas outlet was based on the fully 
developed flow assumption where the gradients of all variables in the flowing 
direction were taken to be zero. No-slip conditions were assumed at the wall. 
 
 



 

Table 1 Governing equations of the CFD model 
Equations                      φ                        φΓ φS

Continuty equation               1        0                  0 

Momentum equation                  iu μ     

j

i ji
i

i j j

μ u
ρu uxp ρg

x x x

∂
∂

∂∂∂
− + + −
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' '( ) ( )

Turbulence dissipation equation      ε /+ t εμ μ σ          ( / ) /−ε ii εε c P c ρε k1 22

Reynolds stress equation       ' '
i ju u   /+μ μ σt k          φ+ +ij ij ijP ε  

 
Geometric Model 
 
The inlet gas velocity is set as 16.12 m/s. The schematic diagram and structured 
mesh of the SRTS is shown in Fig. 1. It is seen that the SRTS contains a 
semi-circular separator housing which is connected with an inlet of upward flowing 
gas-solid suspension and a downward flowing solid outlet or dipleg. A 156 mm ID gas 
outlet is horizontally and centrally located, extending through the separator housing 
and paralleling the base of the separator and the inner concave surface of the 
separator housing. Several horizontal gas openings are disposed uniformly around 
the gas outlet. The width of the inlet and outlet is 68 mm and 73 mm, respectively. 
The radius of the concave surface and the width of the separator housing is 157.5 
mm and 268 mm. Coordinate directions of x, y, z are illuminated in Fig.1.  

 

 
(a) 

 
(b) 

Fig.1 Schematic diagram and structured mesh of the SRTS 



 

Model Validation  
 
In order to validate the CFD simulation method described above, the predicted 
results were compared with available experimental data obtained in a cold model 
SRTS having the same size. Fig.2 shows that data from both methods are close, 
indicating validation of the established CFD models.  
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Fig. 2 Comparison of results from experiment and simulation 

 
RESULTS AND DISCUSSION 
 
Flow Field in Separator Housing 
 
Fig.3 gives the velocity vectors on the vertical plane of z =100 mm of SRTS. In the 
range of 0º< A < 180º, the gas velocity is always higher than the inlet gas velocity, 
indicating a greater gas flow rate in the SRTS. As shown in Fig. 1, the gas flow in the 
SRTS can be categorized into two types: gas flow entering the gas outlet through the 
gas openings and gas flow circulating in the separator housing. The latter 
significantly increases the gas flow rate in the separator housing, leading to a greater 
gas velocity than in the inlet. Moreover, the gas velocity in the bottom region, the 
space between the gas outlet and the base, is large, mainly arising from the 
decrease of the cross-sectional area.  

 
Fig.3 Velocity vectors on the plane of z =100 mm 



 

The tangential gas velocity governs the centrifugal force and the particle collection. 
Fig. 4 shows the variation of tangential gas velocity as a function of dimensionless 
radial position and A, the angle to the positive x axial as shown in Fig. 1. It is seen 
that the tangential gas velocity decreases with increasing radial position, with the 
maximum near the outer surface of the gas outlet and the minimum at the vicinity of 
the inner concave surface of the separator housing. The tangential gas velocity also 
varies along the circumference. As shown in Fig. 4, the tangential velocity decreases 
as A increases, arising from the decrease of the gas flow rate and leading to 
decreasing centrifugal force.  
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Fig. 4 Variation of tangential gas velocity as a function of radial position and A 
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(a) radial gas velocity 
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(b) axial velocity component 
Fig. 5 Variation of radial and axial velocity components as a function of radial position 

and A 
Fig. 5 presents the variation of radial and axial velocity components as a function of 
radial position and A. In this work, the radial velocity in the direction opposite to the 
centrifugal force is defined to be positive. It is seen that the radial velocity decreases 
with increasing A within the first 45º of the separator circumference, while it is 
approximately zero when A is greater than 45º. The axial velocity does not show a 
regular variation, except that it is negative at the vicinity of the gas outlet (r/R=0.495), 
probably influenced by the gas flow in the gas outlet which also has a negative axial 
velocity.   
 
Flow Field in the Bottom Region 
 
As discussed before, gas not only enters the gas outlet through the gas openings, 
but also circulates in the separator housing. The variation of the cross-sectional area 



 

of the bottom region governs the circulation gas flow rate and influences the pressure 
drop of the SRTS, while the former significantly increases the gas flow rate in the 
SRTS and affects the particle collection efficiency. Fig. 6 shows the tangential gas 
velocity in the bottom region. When gas passes through the bottom region, the 
tangential velocity increases first, reaches the maximum when x is close to 0, and 
then decreases. This is dominated by the variation of the cross-sectional area of the 
bottom region, with a contraction for x<0 and an enlargement for x>0 (Fig. 1). Fig. 6 
shows that the tangential velocity also changes with the distance to the gas outlet. 
The closer to the gas outlet, the higher the tangential velocity. This is similar to the 
variation of the tangential velocity for 0º<A<180º.  
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Fig. 6 Variation of the tangential velocity in the bottom region 

 
Fig.7 (a) presents the profile of the radial velocity in the bottom region. It is seen that 
the radial velocity increases with increasing x, with consistently negative values for 
x<0, which is probably caused by inertial force, and positive velocity for x > 0. 
Moreover, the radial velocity increases with height. The axial velocity seems to be 
almost constant along the x axis, Fig.7(b). 
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Fig. 7 Variation of the radial and axial velocities in the bottom region 
 

Flow Field in the Gas Outlet 
 
Fig. 8 presents the tangential velocity variation in the gas outlet. It is seen that the 
tangential velocity is consistently negative, indicating a clockwise swirling flow 
occurring in the gas outlet. Gas openings were initially made with slanting edges. 



 

These slanting edges lead to a sharp turn when the gas-particle suspension enters 
the gas openings. In this way, particles are separated by inertial force. The tangential 
velocities are close to each other for different A, signifying that every gas opening on 
the gas outlet gets approximately the same gas flow rate. Moreover, the tangential 
velocity is very small for r/R close to zero, mainly caused by the eddy at the center of 
the gas outlet.     

The axial gas velocity at different cross sections of the gas outlet is shown in Fig. 9. It 
is seen that the axial velocity near the wall of the gas outlet is greater than that at the 
center. There is a big difference in the axial velocity between the cross sections of 
z=100 mm and 200 mm, signifying a spiral motion in the gas outlet. Moreover, the 
evolution of the axial velocity along the radial direction at the cross-section of z=600 
mm is more fluent than that of z=100 mm and 200 mm, signifying a fully developed 
flow near the exit of the gas outlet. 
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Fig. 8 Tangential velocity in the gas outlet 
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Fig. 9 Axial velocity at different cross-sections of gas outlet 

 
CONCLUSION 
 
The flow field in a novel ram horn-type short residence time separator (SRTS) was 
investigated by CFD simulation. The gas flow rate in the SRTS is significantly greater 
than the feed flow rate. The tangential velocity in the separator housing increases 



 

with the increase of the angle to the positive x axis, and decreases with increasing 
radial position. The radial velocity is positive at the vicinity of A=0º, but approximately 
equals zero in the remaining regions. Influenced by the gas flow in the gas outlet, the 
axial velocity is negative at the vicinity of the gas outlet (r/R=0.495). In the bottom 
region, the tangential velocity is governed by the cross-sectional area of the region. 
The radial velocity increases with increasing x, being negative for x<0 and positive 
for x>0. Because of the slanting edges of the gas openings, the gas passing through 
the gas openings in the reverse direction, and a swirl in the opposite swirling 
direction to the main flow in the separator housing occurs in the gas outlet.  
 
NOTATION 
 
A angle of the gas opening to positive x axis, º 
DH hydrodynamic diameter, m  
k turbulent kinetic energy 
I turbulence intensity 
Sφ source item of equation (1) 
ur radial velocity, m/s 
ut tangential velocity, m/s 
uz axial velocity, m/s 
x x axis as shown in Fig.1 
Greek letters 
φ universal variable, - 
Гφ transport coefficient,- 
ρ density, kg/m3 
μ viscosity, Pa.s 
σk, Prandtl number of turbulent kinetic energy k 
σε, Prandtl number of turbulent dissipation rate ε 
ε turbulent dissipation rate, m2/s3 
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