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ABSTRACT

2D and 3D simulations of gas species diffusion in a pseudo-2D bubbling fluidized bed
were carried out and compared to experimental measurements. Tracer gas
concentration and solids velocity profiles measured throughout the bed showed great
deviations of the 2D simulations due to negligence of the friction on the large front and
back walls of the pseudo-2D unit and the inability to resolve gas species gradients
across the thickness of the bed. 3D simulations circumvent these limitations and result
in much more reasonable comparisons with experimental data. A clear lack of gas
species diffusion was observed, however, and this was attributed to the negligence of
particle-induced diffusion of gas species within the bed. Further work is recommended
to investigate the modelling of particle-induced gas species diffusion in fluidized bed
reactors.

INTRODUCTION

Numerical modelling of fluidized beds has enjoyed considerable research attention
over the past few decades. The most popular approach is known as the Two Fluid
model (TFM) which simulates the gas and solid phases in the fluidized bed as
interpenetrating continua (fluids). The TFM usually employs a set of closure laws
known as the Kinetic Theory of Granular Flows (KTGF) (1, 2) to modify the internal
stresses of the fluid representing the solids phase, thereby making it behave more like
a granular medium.

Although considerable room for further improvement exists, the TFM closed by the
KTGF has been shown to give adequate predictions of fluidized bed hydrodynamics
(e.g. (3)). Thus, research efforts have been extended to incorporate chemical kinetics
and simulate complete fluidized bed reactors. The additional physics included in this
extension significantly increases the complexity of the problem due to the tight coupling
between reactor hydrodynamics, heat transfer, species transfer and kinetics. More
research is therefore required to build the understanding necessary for carrying out
sufficiently accurate fluidized bed reactor simulations.

One of the open questions in the modelling of reactive fluidized bed systems is the
species transfer in the emulsion phase. A recent study on gas dispersion in a packed
bed (4) concluded that packed particles have a significant diffusive influence on the
transport of a concentrated tracer gas. The physical interpretation of the phenomenon
is shown in Figure 1.

This paper will investigate whether this or other diffusive phenomena (e.g. particle
induced turbulence) are also significant in fluidized bed reactors by comparing
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simulations with the standard TFM approach (without any special treatment of the gas
diffusion) to dedicated experiments completed in a pseudo-2D fluidized bed unit. The
results will give a clear indication about whether additional work is necessary to model
particle-induced gas species diffusion in fluidized bed reactors.
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Figure 1: Particle-induced gas species diffusion as portrayed in (4). The presence of particles causes a
concentrated tracer gas to repeatedly branch out, thereby experiencing greatly enhanced diffusion.

EXPERIMENTS
Experimental set up

The experimental setup (Figure 2) consisted of a pseudo-2D fluidized bed column with
a height of 1.5 m, a width of 0.3 m and a depth of 0.015 m. A porous plate with 40 um
average pore size and 3 mm thickness was used as the gas distributor. Mass flow
controllers were used to control the gas inlet flow rate and the column was equipped
with an expanding metallic freeboard at the top in order to prevent elutriation of fine
particles at higher flow rates (see [ref] for more details about the experimental set
up).The setup has been used for both particle image velocimetry measurements and
gas injection-extraction measurements.

Spherical glass beads with a density of 2500 kg/m® were used as the bed medium. A
narrow particle size distribution in the range of 400-600 ym was used (D10 = 430 pm,
D50 = 478 ym & D90 = 526 um). Humidified air at ambient temperature was used as
the fluidizing gas.

A 5 mm inner diameter tube was used as the probe for gas injection from a port on the
back plate located at the centre of the column and 5.5 cm above the distributor. CO,
was injected as the tracer gas at a rate corresponding to 3% of the fluidization flowrate.
The same probe was used for gas extraction to be sent to a Micro GC for gas sampling
through a capillary tube. Three samples were analyzed for each measurement point.

A high speed CCD camera (Lavision model Image Pro HS4M) was used to film the bed
from the front for the purpose of determining the particle velocity field based on
PIV/DIA (discussed further below). Lighting was supplied by four LED lamps.



Figure 2: Schematic representation of the experimental set up.

Particle image velocimetry

PIV is a non-invasive optical measurement technique that determines the particle
velocity from two images recorded in short succession. The two images are analysed
by first dividing each image into NxN interrogation areas and then applying a cross
correlation to determine the average particle displacement in each interrogation area.
The measurement procedure and the requirements for good statistics are described in
Cloete et al. 2013 (5)

SIMULATIONS

Simulations were carried out both on a 2D planar geometry and on a full 3D geometry
using the standard TFM closed by a fairly standard version of the KTGF.

Model equations

Conservation equations are solved for each of the two phases present in the
simulation. The continuity equations for the gas and solids phases phase are given
below:

%(agpg)+v-(agpg5g)20 Eq.1

0 ~
a(asps)+V-(aspsus):0 Eq. 2
Momentum conservation for the gas phase is written as

0 ~ . = - .
E(agpgug)+ V-(agpgugug ) = —ang +V. T, ta,p,8 +ng (US —Ug) Eq.3
And for the solids as
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The inter-phase momentum exchange coefficient (Kgs = ng) was modelled according
to the formulation of Syamlal and O’Brian (6).

Solids phase stresses were determined according to the KTGF analogy. The
conservation equation for granular temperature is given below:
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This partial differential equation was simplified to an algebraic equation by neglecting
the convection and diffusion terms (7). The two final terms in Equation 5 are the
collisional dissipation of energy (2) and the interphase exchange between the particle
fluctuations and the gas phase (8). Solids stresses are calculated according to shear
and bulk (2) viscosities. The shear viscosity consists of three parts: collisional (6, 8),
kinetic (6) and frictional (9). The solids pressure formulation by Lun et al. (2) was
enhanced by the frictional pressure formulation by Johnson and Jackson (10). The
radial distribution function of Ogawa and Oshima (11) was employed.

Boundary conditions

A simple no-slip wall boundary condition was set for the gas phase. The Johnson and
Jackson (10) boundary condition was used for the granular phase with a specularity
coefficient of 0.25.
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The inlet condition was specified as a velocity inlet injecting air at a flow rate of 0.6 m/s.
CO2 was injected through a velocity inlet on the back wall to mimic the experiment. In
the 2D simulation, CO2 was injected via a source term. The outlet was designated as a
pressure outlet at atmospheric pressure.

Flow solver and solver settings

The commercial software package, FLUENT 13.0 was used as the flow solver. The
phase coupled SIMPLE scheme (12) was used for pressure-velocity coupling and the
higher order QUICK scheme (13) for the spatial discretization of all remaining
equations. First order implicit temporal discretization was used (14).

Geometry and meshing

Both 2D and 3D geometries were completed on a 1.5x0.3 m? plan for 2D and a
1.5x0.3x0.015 m® hexahedron for 3D. Meshing was done using a simple structured grid
of completely square/cubic cells. A fine cell size of 2.5 mm (~5 particle diameters) was
employed. The initial mesh consisted of 5 mm cells which were subsequently refined to
2.5 mm. Refinement was done by hanging node adaption only in the lower part of the
domain where the bed material resides.



Initial conditions

The solution was initialized with zero velocity and no solids, after which solids were
patched in at a volume fraction of 0.6 to the initial static bed height used in the
experiment. The solution was run for 5 seconds in order to attain a quasi-steady flow
condition. This solution was then used as the initial condition for time-averaging.
Simulation summary

A summary of the physical properties and simulation parameters are given in Table 1.

Table 1: Physical properties and simulation parameters

Gas density 1.225 kg/m®

Gas viscosity 1.789x107° kg/m-s
Particle density 2500 kg/m®
Particle size 500 pm

Bed dimensions
Particle-particle restitution

1.5x0.3 m? (2D) & 1.5x0.3x0.015 m* (3D)
0.9

Specularity coefficient 0.25
Angle of internal friction 30°
Friction packing limit 0.50
Maximum packaging limit 0.63
Initial static bed height 04m
Initial solids volume fraction 0.6

RESULTS AND DISCUSSIONS

Results will be presented by comparing tracer gas concentrations and particle velocity
measurements between simulations and experiments. CO2 tracer concentrations will
be compared via cross-stream profiles at three heights: 10.5 cm, 34.5 cm and 60.5 cm.
Solids velocity will be compared at 10 cm, 20 cm, 30 cm and 40 cm.

The tracer concentrations are compared in Figure 3a and 3b. It is immediately clear
that the 2D simulation (Figure 3b) significantly under-predicts the tracer gas
concentrations, while the 3D simulation gives a more reasonable comparison.

Two primary causes of the significant error in the 2D simulations can be identified: the
friction at the front and back walls must be accounted for and the CO, concentration
varies across the thickness of the bed (larger concentrations at the back wall where the
tracer is injected and measured). These two effects will be discussed in some more
detail.

2D simulations essentially assume a frictionless front and back wall, thereby allowing
for simulated particle velocities which are much greater than experimental
measurements (Figure 4). The implication of such over-predicted solids velocities on
gas species transport is greater gas back-mixing (due to the stronger solids
recirculation) and stronger convective mixing (due to the much larger amount of kinetic
energy in the bed). These effects should cause more species diffusion, especially



towards the top of the bed. When comparing Figure 3a to Figure 3b this indeed
appears to be the case.
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Figure 3: Comparison of cross-stream experimental and simulated CO, volume fraction profiles at different
heights in the bed: a) (3D) case and b) (2D)
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Figure 4: Comparison of cross-stream experimental and simulated (2D) solids vertical velocity profiles at different
heights in the bed.

In order to explain the significant under-prediction of the tracer concentration by the 2D
experiments, however, the second shortcoming of the 2D simulation must be
considered: uniformity across the bed thickness. As shown in Figure 5, the tracer
concentration varies significantly across the thickness of the bed with much higher
concentrations occurring at the back wall than at the front. Since the 2D simulation
essentially reports an average across the thickness and the 3D simulation reports the
concentration at the back wall, the 3D simulation returns significantly higher tracer
concentrations.

However, even though the 3D simulations predict tracer concentrations in the correct
range, Figure 3a clearly indicates that not enough tracer diffusion occurs. The
convective species transport should be captured with reasonable accuracy due to the
much improved agreement with particle velocity measurements shown in Figure 6
(especially in the central regions where the tracer gas is injected). This implies that
diffusive species transport is significantly under-predicted.



Figure 5: Tracer concentrations at the back wall (left), on a plane though the centre of the bed (middle) and at the
front wall (right). The range is between 0 and 0.1 (CO, volume fraction).
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Figure 6: Comparison of cross-stream experimental and simulated (2D) solids vertical velocity profiles at different
heights in the bed.

The data therefore suggests that additional modelling is required to account for
particle-induced diffusion of gas species. This can be due to diffusion in the emulsion
phase as shown in Figure 1 or perhaps also due to particle induced turbulence in
regions with a lower solids volume fraction. Future work will derive the required
particle-induced species diffusion model and test whether it has a significant impact on
a reactive fluidized bed simulation.

Conclusions

Gas species transport was experimentally investigated in a pseudo-2D fluidize bed
unit. Results were compared to 2D and 3D simulations to conclude that 3D simulations
are mandatory for accurate prediction of the species transport. 2D simulations
neglected wall friction on the front and back walls and did not capture the species
gradient across the thickness of the bed.



3D simulations also showed that additional gas species diffusion modelling is required.
Simulation data showed considerably less gas species diffusion than that which was
recorded in the experiments and this was attributed to particle-induced diffusion of gas
species which was not included in the simulation. Further work should be carried out in
order to develop the necessary model and evaluate its impact on reactive fluidized bed
simulations.
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