Engineering Conferences International ECI Digital Archives

Fifty Years Of Watershed Modeling - Past, Present And Future

Proceedings

2012

WinSLAMM: Integrating Stormwater Management and Green Technologies

Robert Pitt The University of Alabama, USA

Follow this and additional works at: http://dc.engconfintl.org/watershed Part of the <u>Civil and Environmental Engineering Commons</u>

Recommended Citation

Robert Pitt, "WinSLAMM: Integrating Stormwater Management and Green Technologies" in "Fifty Years Of Watershed Modeling -Past, Present And Future", A.S. Donigian, AQUA TERRA Consultants; Richard Field, US EPA (retired); Michael Baker Jr., Inc. Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/watershed/24

This Article is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fifty Years Of Watershed Modeling - Past, Present And Future by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

In 1977, WinSLAMM didn't start with a card deck, but with the next best thing, a Radio Shack TRS 80, model 1 ("Trash 80") with an optional tape drive (couldn't afford the \$500 disk drives)

Brief History of WinSLAMM

- WinSLAMM began life as a stormwater quality model and focuses on small/intermediate storm hydrology, particulate transport, soil processes in disturbed urban soils, and stormwater quality variability.
- It is not a replacement for large system hydraulic/drainage design models, but can be integrated with many.
- WinSLAMM began as part of the data analysis efforts of EPA stormwater research projects in the 1970s.
- Extensions to the model were based on Toronto and Ottawa stormwater projects, various state projects, and the EPA's NURP projects in the 1980s.
- Continued modifications in response to resource/regulatory agency requests and on-going research results.
- Recent efforts have focused on green infrastructure benefits in areas served by combined sewers.

Modeling Green Infrastructure Components

- Green infrastructure modeling typically involves a large number of infiltration and/or storage elements in the watershed, both at source areas and at consolidation locations.
- The overall effects between and within these various components are not directly additive and require complete hydraulic, particle size, and pollutant routing.
- Treatment trains at both small and large scales result in preferential removal of large particles in the initial treatment components, leaving more difficult smaller particles to be removed by subsequent treatment operations, for example.
- Detention storage (and infiltration) of runoff volumes distributed throughout the area also enhances the performance of the down-gradient stormwater controls.

Features of WinSLAMM Benefiting Green Infrastructure Modeling

- Performance of stormwater controls are calculated based on actual sizing and other attributes that affect performance; it does not apply a generic percentage reduction.
- The calculation algorithms for the stormwater controls are based on both theory and extensive field monitoring.
- Version 10 of WinSLAMM incorporates both hydraulic and particle size routing thru and between treatment systems in complex networks.
- Regional water quality calibration files are available for many land uses and most areas of the country based on the National Stormwater Quality Database.

National Stormwater Quality Database and Regional WinSLAMM Calibration Areas

Stormwater Infiltration Controls Included in WinSLAMM

- Bioretention/biofiltration areas
- Rain gardens
- Porous pavement
- Grass swales and grass filters
- Infiltration basins
- Infiltration trenches
- Green (and blue) roofs
- Rain barrels and water tanks
- Disconnections of paved areas and roofs from the drainage system
- Evapotranspiration and stormwater beneficial use calculations are also available

Also includes: wet detention ponds, street and catchbasin cleaning, and proprietary controls (media filters and hydrodynamic devices)

Rain Garden/Biofilter Input Screen

Biofiltration Control Device

Different types of rain gardens/biofilters for: residential roofs, shopping center parking lots, and residential and ultra urban/downtown curb-cut biofilters.

Madison, WI

Kansas City, MO (photo by Deb O'Bannon, UMKC)

Biofiltration/Infiltration Routing Schematic

Annual Runoff Reductions from Paved Areas or Roofs for Different Sized Rain Gardens or Biofilters

Rain Garden Size (% of drainage area)

Clogging Potential for Different Sized Rain Gardens or Biofilters Receiving Roof Runoff

Rain Garden Size (% of roof area)

Not likely to be a problem for most roof rain gardens, as it would take several decades to approach critical sediment loading values for sizes likely necessary for significant runoff reduction (generally, want at least 10 years).

Clogging Potential for Different Sized Rain Gardens or Biofilters Receiving Paved Parking Area Runoff

Rain Garden Size (% of paved parking area)

Likely premature clogging potential (critical sediment loading within 10 years) for biofilters serving paved parking areas, unless at least 3 to 8% of the drainage area (most are smaller, and would therefore require suitable pre-treatment, such as_{15} grass filtering)

Water Tank/Cistern/Rain Barrel Beneficial Use of Stormwater Input Screen

Cistern Control Device

First Source Area Control Practice

Land Use: Residential 1

Source Area: Roof 1

Device Properties

Top Surface Area (sf)	
Bottom Surface Area (sf)	25.0
Height to Overflow (ft)	5.00
Rock Filled Depth (ft)	0.00
Rock Fill Porosity (0-1)	0.00
Inflow Hydrograph Peak to	3.80
Average Flow Hatio	0.00
Number of Devices in Source Area or Land Use	50
Runoff Fraction Entering Devices (0-1)	1.00

Source Area Water Use Rate Multiplier =

Apply Rate Multiplier

Copy Cistern Data

Paste Cistern Data

Control Practice # : 5 Land Use # : 1

Source Area # : 1

Delete

Total Area: 1.870 acres Cistern No. 1

Continue

Water Use Rate

	Water Use Rate	Source Area
Month	per Cistern	Water Use Rate
	(gal/day)	(gal/day)
January	1302.00	65100.00
February	4859.00	242950.00
March	1705.00	85250.00
April	3120.00	156000.00
May	2418.00	120900.00
June	5310.00	265500.00
July	11067.00	553350.00
August	12648.00	632400.00
September	4200.00	210000.00
October	0.00	0.00
November	0.00	0.00
December	0.00	0.00

Cancel

Our recent WERF report has compilations of various ET databases showing monthly ET values for many regions in the US that can be used to estimate the irrigation needs for stormwater beneficial uses. Some areas have large amounts of ET data (such as CA and FL), while the data are more sparse for other areas.

Urban ET values need to be modified based on microclimate factors that differ from typical agricultural areas where ET rates are usually measured.

ET Rates can Vary Greatly Over Small Distances, Especially in the West

Lat	Long	Elev	Station Name	Years of Data	Kimberly Penman Equation (1982) (ET _r) (108 18	222 281 223 20 17 253 277 283 15		
					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	DeGo 232 289 246 265
64.84	-147.62	454	Fairbanks Alaska						Una	vailable	at this t	time				22510 225 = 208
61.08	-149.73	1480	Rabbit Creek Alaska						Una	vailable	at this t	time				270 188199 272 14 12
57.8	-135.13	450	Hoonah Alaska						Una	vailable	at this t	time				
33.44	-86.081	600	Talladega Alabama	5	0.07	0.13	0.18	0.24	0.26	0.26	0.25	0.24	0.23	0.21	0.13	0.09
32.96	-87.171	363	Oakmulgee Alabama	7	0.08	0.09	0.13	0.20	0.22	0.25	0.24	0.22	0.21	0.17	0.13	0.08
34.14	-87.362	804	Bankhead Alabama	7	0.06	0.12	0.17	0.24	0.25	0.26	0.25	0.25	0.23	0.20	0.13	0.09
32.45	-85.641	283	Tuskegee Alabama	5	0.08	0.13	0.17	0.24	0.26	0.27	0.27	0.25	0.23	0.19	0.13	0.07
34.76	-90.722	253	Marianna Arkansas	3	0.06	0.07	0.13	0.18	0.21	0.27	0.26	0.25	0.20	0.16	0.11	0.06
34.27	-92.393	270	Sheridan Arkansas	6	0.07	0.12	0.19	0.08	0.32	0.31	0.20	0.30	0.28	0.21	0.15	0.08 S North American 1983
36.07	-93.357	2365	Compton Arkansas	2	0.06	0.10	0.15	0.21	0.32	0.38	0.35	0.30	0.24	0.22	Uni G: 11 d gre	ree 0.08
35.87	-94.297	1633	Strickler Arkansas	6	0.06	0.07	0.12	0.16	0.19	0.23	0.24	0.24	0.20	0.15	0.11	0.07
32.4	-110.27	4175	Muleshoe Ranch AZ	13	0.09	0.15	0.22	0.29	0.35	0.37	0.29	0.29	0.31	0.25	0.16	0.11
35.15	-111.68	7000	Flagstaff Arizona	10	0.06	0.10	0.14	0.18	0.24	0.28	0.28	0.24	0.23	0.18	0.10	0.06
32.32	-110.81	3100	Saguaro Arizona	8	0.12	0.18	0.21	0.29	0.35	0.36	0.30	0.29	0.31	0.26	0.17	0.11

Kansas City Water Harvesting Potential of Roof Runoff

Evapotranspiration per Week (typical turfgrass)

Supplemental Irrigation Needs per Week (typical turfgass)

Monthly Rainfall (per week)

Irrigation needs for the landscaped areas surrounding the homes were calculated by subtracting long-term infiltrating rainfall amounts from the regional evapotranspiration demands for turf grass. However, can "overirrigate" as water conservation is not a primary stormwater management goal, and want to infiltrate as much roof runoff as possible into the landscaped areas without harming the plants.

Reductions in Annual Runoff Quantity from Directly Connected Roofs with the use of Rain Barrels and Water Tanks (Kansas City CSO Study Area)

Percentage reduction in annual

Rain barrel/tank storage (ft³ per ft² of roof area)₉

0.125 ft of storage is needed for use of 75% of the total annual runoff from these roofs for irrigation. With 945 ft² roofs, the total storage is therefore 118 ft³, which would require 25 typical rain barrels per house, way too many! However, a relatively small water tank (5 ft D and 6 ft H) can be used instead.

rain barrel/tank storage per house (ft ³)	percentage reduction in annual roof runoff	# of 35 gallon rain barrels	tank height size required if 5 ft D (ft)	tank height size required if 10 ft D (ft)
0	0	0	0	0
4.7	20	1	0.24	0.060
9.4	31	2	0.45	0.12
19	43	4	0.96	0.24
47	58	10	2.4	0.60
118	75	25	6.0	1.5
470	98	100	24	6.0

Annual Roof Runoff Reductions for Birmingham, AL, Green Roofs

Green Roof as a Percentage of Total Roof Area

Green roof performance calculations are similar to the biofilter calculations (but no infiltration!) and rely on ET as the major water reduction process. Excess roof runoff can be directed to rain gardens or water tanks for further runoff volume reductions.

Grass Filter Strips Input Screen

Filter Strip Control Device

Land Use: Institutional 1 Source Area: Paved Parking 1

Total Area: 2.000 acres Filter Strip No. 1

First Source Area Control Practice

Device Properties	
Total Area in Source Area (ac)	2.000
Area Fraction Served by Filter Strips (0-1)	1.00
Total Filter Strip Length (ft)	0
Effective Width (ft)	0
Infiltration Rate (in/hr)	0.000
Typical Longitudinal Slope (0-1)	0.000
Typical Grass Height (in)	0.0
Grass Retardance Factor	-
Use Stochastic Analysis to account for Infiltration Rate Uncertainty	
Native Soil Infiltration Rate COV	

Select Particle Size File

🔘 Clay Ioam - 0.1 in/hr

Silty clay loam - 0.05 in/hr

Sandy clay - 0.05 in/hr

Silty clay - 0.04 in/hr

Clay - 0.02 in/hr

C:\Program Files\WinSLAMM\NURP.CPZ

Select Native Soil Infiltration Rate

- Sand 8 in/hr
- C Loamy sand 2.5 in/hr
- Sandy loam 1.0 in/hr
- Loam 0.5 in/hr С
- Silt loam 0.3 in/hr.
- Sandy silt loam 0.2 in/hr
 - Copy Filter Strip Data Paste Filter Strip Data Continue Cancel Delete

Grass Swales Input Screen

Grass Swale Number 1

Grass Swales

Grass Swale Data	
Total Drainage Area (ac)	2.000
Fraction of Drainage Area Served by Swales (0-1)	1.00
Swale Density (ft/ac)	350
Total Swale Length (ft) (calculated)	700
Average Swale Length (ft) (calculated)	313
Typical Bottom Width (ft)	3
Typical Swale Side Slope (ft H : 1 ft V)	3
Typical Longitudinal Slope (ft/ft, V/H)	0.05
Swale Retardance Factor	D 🗸
Typical Grass Height (in)	3
Swale Dynamic Infiltration Rate (in/hr)	0.25
Typical Swale Depth (ft) for Cost Analysis (Optional)	3

Use Total Swale Length Instead of Swale Density for Infiltration Calculations

Select Particle Size **Distribution File**

Control Practice # : 1

Particle Size Distribution File Name

C:\Program Files\WinSLAMM\NURP.CPZ

Select Swale Density by Land Use

- C Low density residential 240 ft/ac
- C Medium density residential 350 ft/ac C Industrial 260 ft/ac
- C High density residential 375 ft/ac
- Strip commercial 410 ft/ac.

CP Element #: 1

- C Shopping center 90 ft/ac
- C Freeways (shoulder only) 480 ft/ac
- C Freeways (center and shoulder) 540 ft/ac.

Delete

Total area served by swales (acres):

Total area (acres):

Cancel

Select infiltration rate by soil

C Loamy sand - 1.25 in/hr C Sandy loam - 0.5 in/hr C Loam - 0.25 in/hr C Silt loam - 0.15 in/hr C Sandy clay loam - 0.1 in/hr C Clay loam - 0.05 in/hr C Silty clay loam - 0.025 in/hr C Sandy clay - 0.025 in/hr C Silty clay - 0.02 in/hr C Clay - 0.01 in/hr

C Sand - 4 in/hr

Pollutant Control in Grass Swales and Grass Filters

Kansas City, MO

Porous Pavement Input Screen

Porous Pavement Control Device

First Source Area Control Practice P	orous Pavem	ent Number 1 Porc	ous Concrete [,]	\
Land Use: Residential 1		Porous Asph	alt	\backslash
Source Area: Sidewalks 1		Concrete Grid with	$\langle \rangle$	\mathbf{X}
		Aggregate Bedding 🛛 🔪	$\langle \rangle$	
Total Area: 0.575		<u> </u>		
Porous pavement area (acres):	0.575	1, 3.0"		Porous Pavemen
Inflow Hydrograph Peak to Average Flow F	latio 3.8			Layer
Pavement Geometry and Properti	es		I I I ATTENTER	
1 - Pavement Thickness (in)	3.0	2- 3.0"	いちかんにちかん	Redding
Pavement Porosity (>0 and <1)	0.45		SA A A SA A A SA A A SA A SA A SA A SA	
2 - Aggregate Bedding Thickness (in)	3.0		S BASB	
Aggregate Bedding Porosity (>0 and <1)	0.45			
3 - Aggregate Base Reservoir Thickness (in)	12.0			Aggregati
Aggregate Base Reservoir Porosity (>0 and <1)	0.45			AND LAN Base
Qutlet/Discharge Options		4- 9.0"	66868	A A Reservoir
Perforated Pipe Underdrain Diameter, if used	3.00		11111111111111111111111111111111111111	Contraction (Contraction) (Con
			ngrade / / / / / / / /	~//~//~/
4 - Perforated Pipe Underdrain Uutlet Invert Elevation (inches above Datum)	9.0		~~~~~~~	(< < <
Number of Perforated Pipe Underdrains	100	Surface Pavement Layer	Resto	rative Cleaning Frequency –
Subgrade Seepage Rate (in/hr) - select below	0.100	Infiltration Hate Data	O N	ever Cleaned
Use Randem Number Concretion to Assount for		Initial Infiltration Rate (in/hr)	40.000 C T	hree Times per Year
Uncertainty in Seepage Rate	M	Percent of Infiltration Rate After 3 Years (0-10	0) C S	emi-Annually
Subgrade Seenage Bate COV	0.80	Percent of Infiltration Rate After 5 Years (0-10	0) • A	nnually
	0.00	Time Period Until Complete Clogging Uccurs (yrs) CE	very Two Years
– Select Subgrade Seenage Bate		Percent of Original Infiltration Rate Upon Clea	ning 75.0 CE	very Three Years
C Sand 8 in/hr C Clauloam 0	1 in /hr	Curford Charrier Land (h 4-0		very Four Years
C Loamy sand - 2.5 in/hr C Silty clay loam	-0.05 in /hr	Surrace Clogging Load (ID/Sr)		very Five Years
C Sandy loam - 1.0 in/hr C Sandy clay idan	0.05 in /hr	cannot enter values in both sets of ro		very Seven tears
C Loam - 0.5 in/hr C Siltu clay - 0.	4 in/hr		L E	very ren tears
C Silt loam - 0.3 in/hr C ⊂ Clau - 0.02 in/	br	Copy Porous Paste Porous	1	1
C Sandy silt loam - 0.2 in/hr		Data Data	Delete Control	Cancel <u>C</u> ontinue
Control Practice # : 1 Land Use # : 1 So	urce Area # : 3	1		

Malmo, Sweden

Kansas City's CSO Challenge

- Combined sewer area: 58 mi²
- Fully developed
- Rainfall: 37 in./yr

- 36 sewer overflows/yr by rain > 0.6 in; reduce frequency by 65%.
- 6.4 billion gal overflow/yr, reduce to 1.4 billion gal/yr
- Aging wastewater infrastructure
- Sewer backups
- Poor receiving-water quality

Adjacent Test and Control Watersheds

KC's Modeling Connections

KCMO XP-SWMM SUSTAIN-SWMM - Drainage (Transport) - Individual LID - Design Objectives - Drainage (Transport) - Multi-scale - Subarea Optimizatio Weight of Evidence WinSLAMM -Land Surface Charact -Drainage (Transport) -Design Options -Stormwater Beneficial Uses - Multi-scale

Surveys were conducted for each house and lot in the study area. This information was used with the GIS data and WinSLAMM to determine the sources of the runoff during different rain conditions

Continuous Simulations using Kansas City 1972 to 1999 Rain Series to Evaluate Roof Runoff Controls in Combined Sewer Area

November		r 🔽 1972 🔽			r 🔽 1972 🔽			er 🔻 1972			r 🔻 197			• 1972			▼ 1972 ▼		▼ 1972 ▼		Rain Number	Julian Starting Date	Starting Date	Starting Time	Ending Date	Ending Time	Rainfall Depth (in)	Duration (hrs)	Intensity (in/hr)	Interevent Time (days)	•
30	31	1	2	3	4	5		1	0.00	11/01/72	00:00	11/01/72	17:00	0.72	17.00	0.04	4.58														
6	7	8	9	10	11	12		2	5.29	11/06/72	07:00	11/06/72	18:00	0.51	11.00	0.05	2.75														
13	14	15	16	17	18	19		3	8.50	11/09/72	12:00	11/10/72	01:00	0.60	13.00	0.05	2.63														
20	21	22	23	24	25	26		4	11.67	11/12/72	16:00	11/13/72	19:00	0.72	27.00	0.03	2.25														
27	28	29	30	1	2	3		5	15.04	11/16/72	01:00	11/16/72	09:00	0.14	8.00	0.02	2.46														
4	5	6	7	8	9	10		6	17.83	11/18/72	20:00	11/19/72	04:00	0.11	8.00	0.01	5.46														
								7	23.63	11/24/72	15:00	11/25/72	04:00	0.20	13.00	0.02	9.04														
	R	ledr	aw	Graj	ph			8	33.21	12/04/72	05:00	12/04/72	10:00	0.02	5.00	0.00	0.75														
Start	Dat		_	<i>1</i> (04 J.7	-		9	34.17	12/05/72	04:00	12/05/72	06:00	0.02	2.00	0.01	0.58														
Juan		с.		11/01/72		11/01/72		11/01/		11/0		11/01//2		2		10	34.83	12/05/72	20:00	12/05/72	21:00	0.02	1.00	0.02	3.42						
End	Date	B:		12/	19/9	9		11	38.29	12/09/72	07:00	12/09/72	13:00	0.25	6.00	0.04	1.96	_													
					12	40.50	12/11/72	12.00	12/12/72	09-00	0.02	21.00	0.04	16.42	-																

Varying-duration Site Infiltration Rates

This plot shows the timeaveraged infiltration rates based on the individual incremental values. The surface infiltration rates are less than 1 in/hr for rain durations about 2 hrs, and longer.

Additional site measurements and deep soil profiles have indicated that infiltration rates are quite low for most of the area during the large and long-duration critical events for overflows.

Examples from "95%" plans prepared by URS for project streets. Plans reviewed and modeled by project team, and construction completed in Summer 2012. Initial site monitoring until end of year (large scale monitoring for last 3 years).

Batch Processing and Life-Cycle Cost Analyses

File Selection for .mdb/.dat Set Model Run

Project File Set Run Output

Print EXIL															
File Number	File Name	Runoff Volume (cf)	Rv	Biological Condition	Runoff Volume Percent Reduction	Particulate Solids Yield (Ibs)	Particulate Solids Yield Percent Reduction	Particulate Solids Concentration (mg/L)	Sub Basin Capital Cost	Sub Basin Land Cost	Sub Basin Maintenance Cost	Sub Basin Total Annualized Cost	Sub Basin Total Present Value Cost	Cost per cubic foot Runoff Volume Reduced (\$/cf)	Cost per pound Particulate Solids Reduced (\$/Ib)
1	01 Kansas City GI example base no controls	1721928.0	0.303	Poor	N/A	20356.93	N/A	189.3731	0	0	0	0	0	N/A	N/A
2	02 Kansas City GI example SC controls for costs	1721928.0	0.303	Poor	0.00	15966.96	21.56	148.5348	1122	0	6439	6529	81362	-	1.36
3	03 Kansas City GI example PP controls for costs	1613114.0	0.284	Poor	6.32	19310.79	5.14	191.7593	178499	0	597	14921	185944	0.13	13.05
4	04 Kansas City GI example B controls for costs	1652773.0	0.291	Poor	4.02	20197.19	0.78	195.7488	123860	6887	8126	18618	232018	0.25	106.65
5	05 Kansas City GI example PP and SC controls for costs	1613114.0	0.284	Poor	6.32	14920.83	26.70	148.1662	179622	0	7036	21449	267306	0.18	3.61
6	06 Kansas City GI example B and SC controls for costs	1652773.0	0.291	Poor	4.02	15807.22	22.35	153.2017	124982	6887	14565	25146	313380	0.33	5.06
7	07 Kansas City GI example B and PP controls for costs	1543958.0	0.272	Poor	10.34	19151.05	5.92	198.6911	302359	6887	8724	33538	417962	0.17	25.45
8	08 Kansas City GI example no drainage controls for costs	1543958.0	0.272	Poor	10.34	14761.09	27.49	153.1455	303481	6887	15162	40067	499324	0.21	6.55
9	09 Kansas City GI example all drain but no swales controls f	1543958.0	0.272	Poor	10.34	9226.217	54.68	95.72149	591456	27887	17840	67538	841672	0.35	5.55
10	10 Kansas City GI example all drain but no CB controls for c	1069228.0	0.188	Poor	37.91	4214.001	79.30	63.13139	1319283	27887	52928	161028	2006767	0.23	9.13
11	11 Kansas City GI example all drain but no pond controls for	1069228.0	0.188	Poor	37.91	6004.987	70.50	89.96278	1464508	6887	50250	168318	2097619	0.24	10.73
12	12 Kansas City GI example all controls for costs	1069228.0	0.188	Poor	37.91	4211.863	79.31	63.09937	1535883	27887	52928	178409	2223367	0.25	10.11
4															

Costs for TP Concentration Goals

Costs for SSC Concentration Goals

Total Annualized Cost (\$/100 acres/year)

Costs for Cu Concentration Goals

Total Annualized Cost (\$/100 acres/year)

Millburn, NJ

Dry well disposal of stormwater for groundwater recharge in conjunction with irrigation beneficial uses

- For the past several years, the city of Millburn has required dry wells to infiltrate increased flows from newly developed areas.
- There are some underground water storage tanks now being installed to use stormwater for irrigation.
- Our recent project, supported by the Wet Weather Flow Research Program of the US EPA, is investigating the performance of this shallow groundwater recharge (including groundwater contamination potential) in conjunction with irrigation beneficial uses of the stormwater.

Nine dry wells were monitored in Millburn, NJ as part of EPA project for longterm hydraulic performance, an d six were monitored to examine surface and subsurface water quality conditions.

This major home restoration project included the installation of underground water storage tanks instead of dry wells. Homes in this neighborhood have summer water bills approaching \$1k/month for landscape irrigation, so the economic benefits of irrigation using stormwater are very good.

Dry Well Drainage Observations

- Most of the dry wells were dry most of the time during the monitoring period (75 to 98% of the time)
- Standing water was observed at a few sites when sufficient time occurred to allow the water to reach an equilibrium minimum water level (about 5 ft below the ground surface).
- Several sites experienced periodic slowly draining conditions, mainly in the early spring.
- These problems could be due to poor soils (with the clays resulting in SAR problems), compacted soils, saturated soil conditions, or high groundwater. 38

Monitored Water Quality below Dry Wells

- Ten rains (0.1 to 9 inches in depth, including Hurricane Irene); median depth 0.15 inches.
- Three dry wells were monitored (along with one cistern).
- TN, NO₃, TP, COD, Cu, Pb, Zn, enterococci, *E. coli* for all events and pesticides/herbicides for one event.
- No significant differences in the paired sample concentrations for the dry wells.
- Bacteria and lead may exceed New Jersey groundwater disposal guidelines.

Parting Thought (delivered by way of a Chinese fortune cookie at dinner last night in Boulder):

"Be careful! Straight trees often have crooked roots."

If you don't like that commentary on poor model documentation or faulty fundamental processes, how about Lucky Numbers: 34, 4, 12, 37, 32, 33 (a new process for selecting random seed numbers for Monte Carlo analyses

Acknowledgements

- This summary presentation includes information from many sources. The examples from Kansas City and Millburn were part of EPA ORD sponsored research projects that used WinSLAMM as part of the data analyses. Some of the beneficial use material was from a recent WERF sponsored research project, and the Huntsville material was from a project sponsored by that Alabama city. Their support for these research projects is gratefully acknowledged, but the use of this material in this presentation does not imply endorsement by these agencies.
- WinSLAMM has benefited from many research project results over the years. However, the time and costs associated with the development of the WinSLAMM code has been mostly a private effort conducted by PV & Assoc. (Robert Pitt, John Voorhees, and Caroline Burger). Additional support provided by government and industry is gratefully acknowledged.