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ABSTRACT
Most empirical observations and numerical analyses have demonstrated that gas-fluidized

beds of granular materials can only be stabilized if interparticle attractive forces reach an order
of magnitude similar to particle weight. If attractive forces are only determined by the universal
van der Waals interaction, this occurs when particle size is typically of the order of a few tens
of microns. In the absence of sufficiently strong attractive forces, gas-fluidized beds exhibit an
unstable bubbling behavior. On the other side, powders with particle size smaller than about 20
microns cannot be fluidized by a gas because interparticle forces are exceedingly large as com-
pared to particle weight, which leads to cohesive aggregation. Cohesive aggregates reaching a
large size cannot be disrupted by the gas. The gas flow becomes heterogeneously distributed in
the bed and usually bypasses it through channels that hinder the gas-solids contact efficiency.
In the last years, a number of reports have appeared on the behavior of a new class of fine and
ultrafine powders, which resembles the nonbubbling fluidlike behavior of noncohesive granular
materials fluidized by liquids. As opposed to cohesive aggregation, fine particles in these spe-
cial class of powders undergo a dynamical process of aggregation in the fluidized bed, which
gives rise to the formation of light aggregates that can be uniformly fluidized in a fluidlike
regime. In this paper, we rationalize this new type of fluidization behavior by considering dy-
namic aggregates, grown to a size limited by the balance between interparticle force and flow
shear, as effective low-density particles.

INTRODUCTION
The classical Geldart’s diagram summarizes empirical observations on beds flu-

idized by dry air at ambient conditions in terms of particle size versus the relative
density difference between the solid particles and the gas. A useful nondimensional
number to interpret the Geldart’s diagram is the granular Bond number Bog, defined
as the ratio of interparticle attractive force F0 to particle weight Wp (Valverde 2013).
Gas-fluidized beds of granular materials with particle size dp & 100 µm (Bog . 1)
generally bubble just beyond the onset of fluidization (Geldart B behavior) (Geldart



1973). For slightly cohesive powders (Bog ∼ 1), gas-fluidized beds exhibit a uni-
form fluidization interval at gas velocities above the minimum fluidization velocity.
This state is characterized by a stable expansion of the bed prior to the bubbling onset
(Geldart A behavior) (Geldart 1973). In the stable fluidization state, the bed behaves
like a weak solid due to enduring interparticle contacts caused by interparticle attrac-
tive forces, which sustain part of the bed weight (Rietema 1991). Fine powders, with
particle size typically dp . 20 µm (Bog >> 1), are generally impossible to fluidize
uniformly by a gas due to the strong attractive forces existing between the particles
when compared to their weight. When fluidized by a gas, fine cohesive powders tend
to rise as a slug of solids or to form channels through which the fluid will escape rather
than being distributed through the bulk. This heterogeneous fluidization behavior is
the so-called Geldart C (cohesive) behavior (Geldart 1973).

Out of the scope of Geldart’s classification, there are some fine and ultrafine pow-
ders that may reach a highly expanded state of nonbubbling fluidlike fluidization when
fluidized by air at ambient conditions (Valverde 2013). Fine powders showing this
behavior are conditioned xerographic toners, made of polymer particles with a vol-
ume average size dp <∼ 10µm. For such a small particle size, we would predict the
Geldart C fluidization behavior. However, the addition of fumed silica nanoparticles,
which become dispersed on the surface of the toner particles, decreases interparticle
adhesion, allowing fluidlike nonbubbling behavior. This type of behavior has been also
reported for some nanostructured powders (Zhu et al. 2005) and even in some cases
there is a full suppression of the bubbling regime, i.e. the fluidized bed transits directly
from a nonbubbling fluidlike behavior to elutriation. Reports of nonbubbling fluidlike
fluidization of micron and sub-micron primary particles can be found from the mid-
1980s (Chaouki et al. 1985; Brooks and Fitzgerald 1986; Morooka et al. 1988; Pacek
and Nienow 1990). A common observation was that uniform fluidization was closely
related to the formation of light agglomerates when fluidizing the original powder at a
superficial gas velocity much larger than the expected minimum fluidization velocity
for the system of individual primary particles. Chaouki et. al. (Chaouki et al. 1985)
made a distinction between Geldart C powders and a separate smaller class, C’, de-
scribed as ”a typical clustering powder”, that fluidized via self-agglomeration of the
primary particles, thus behaving as a system of low density fluidizable particles. Since
the condition of nonbubbling fluidlike fluidization was intimately related to the forma-
tion of porous light agglomerates, this type of fluidization was termed as Agglomerate
Particulate Fluidization (APF). More recently, gas-fluidized beds of xerographic ton-
ers have been observed to take on many of the properties of a fluid, its upper surface
remaining horizontal when the container is tilted and absence of yield stress (Valverde
et al. 2001). The extent of the fluidlike regime, and thus the relative role of hydrody-
namics on restraining macroscopic bubbling, shortened as particle size was increased
(Valverde et al. 2003a). In the limit Bog <∼ 10, the fluidlike regime shrank to zero
and the fluidized bed transited directly from the solid-like to the bubbling regime, indi-
cating that large bubbles could be only restrained by yield stresses for slightly cohesive
particles (Bog ∼ 1) as corresponds to the classical Geldart’s A type of behavior.

A main feature of the behavior of nonbubbling fluidlike beds of fine powders is that



particles aggregate in the gas phase due to the prevalence of the interparticle attractive
force on particle weight by means of a dynamic process ruled by the balance between
interparticle attraction and flow gas shear forces on the aggregates (Valverde 2013).
However, in order to allow for this dynamic aggregation process between individual
fine particles to take place, cohesive aggregates, responsible for the Geldart C behavior
must be disrupted by the gas flow down to the scale of particle size. An efficient method
to assist fluidization of fine cohesive powders is the addition of surface additives such
as silica nanoparticles, which serves to decrease the interparticle adhesive force thus
reducing the strength of cohesive aggregates. Otherwise, the strong attractive forces
usually existing between fine particles in settled powders cause plastic deformation of
contacts, leading to a relevant increase in the adhesive force at interparticle contacts
(Castellanos 2005). The attractive force between particles within cohesive aggregates
for these powders may be much larger than the van der Waals force due to contact
plastic deformation and, if the gas flow cannot break cohesive aggregates of size com-
parable to the system size, gas channels become rather stable and the fluidized bed
exhibits a Geldart C cohesive behavior. The increased contact hardness by means of
silica additive surface coverage reduces the adhesive force (Quintanilla et al. 2001),
thus allowing for the breaking of interparticle contacts by gas-fluidization. For condi-
tioned powders, the van der Waals force is a good approximation to the interparticle
attractive force in fluidization, and individual particles will experience a dynamic pro-
cess of aggregation. Fluidization assistance techniques to break cohesive aggregates
have been also developed to assist fluidization, which serves to turn the Geldart C co-
hesive fluidization behavior into fluidlike fluidization. Among these methods, we find
the application of mechanical agitation (Pfeffer et al. 2004; Quintanilla et al. 2008),
sound wave pulsation (Zhu et al. 2004), centrifugation (Quevedo et al. 2007), applica-
tion of variable electric fields (Lepek et al. 2010; Quintanilla et al. 2012b), addition of
large magnetic particles that are excited by a variable magnetic field (Yu et al. 2005),
and injection of high velocity jets into the bottom of the bed (van Ommen et al. 2010;
Quevedo et al. 2010). A phenomenological approach described in this work to an-
alyze the behavior of gas-fluidized beds of conditioned fine powders is to consider
dynamic aggregates as effective lightweight spheres, which may exhibit nonbubbling
gas-fluidization similarly to coarse beads fluidized by liquids.

DYNAMIC AGGREGATION OF FINE PARTICLES IN A FLUIDIZED BED
Non-Brownian fine particles suspended in a flowing fluid aggregate through a pro-

cess driven by the dynamic equilibrium between the weight of the aggregate and the
hydrodynamic friction from the surrounding gas. The growth of the aggregate is lim-
ited by their mechanical strength, which decreases as its size increases. As the ag-
gregate size increases, its increasing weight has to be balanced by the hydrodynamic
drag force from the surrounding fluid. But, while gravity is a body force acting uni-
formly through the aggregate, the drag acts mainly at the surface of the aggregate (even
highly porous aggregates are known to screen the hydrodynamic field very effectively
(Sutherland and Tan 1970)). Kantor and Witten (Kantor and Witten 1984) and, more
recently, Manley et al. (Manley et al. 2004) have studied the size limit of aggregates



in settling suspensions, which, similarly to aggregates in fluidized beds, cannot grow
indefinitely due to shear stresses generated by the fluid surrounding the aggregate dur-
ing sedimentation. Using a simple spring model for the aggregate, it has been shown
(Manley et al. 2004) that the typical strain on the aggregate is γ ∼ Nmpg/KcRc,
where N is the number of particles in the aggregate, mp is the particle mass, Kc is
the aggregate spring constant and Rc = kdp/2 is the aggregate radius. Kc is given by
k0/k

β , where K0 is the interparticle force constant, k is the ratio of aggregate size to
particle size, and the elasticity exponent is β = 3 in the 3D case (Kantor and Webman
1984). Thus the local shear force on the aggregate is Fs ∼ K0γdp/2 ∼ (mpg)k

D+2,
where D is the fractal dimension of the aggregate (D = lnN/ ln k). Manley et al.
(Manley et al. 2004) used a critical value, measured independently, for the maximum
strain sustainable by an aggregate in a suspension to calculate its maximum size. More
generally, it may be estimated that the critical shear force to halt the aggregation pro-
cess would be order of the interparticle attractive force Fmax

s ∼ F0, which leads to
(Valverde 2013)

Bog ∼ Nk2 = kD+2 (1)

Equation 1 provides a simple tool to estimate the size of aggregates of fine particles
in a gas-fluidized bed from primary physical parameters such as interparticle attractive
force, particle weight, size and density, and aggregate fractal dimension. In the DLA
model, which was introduced by Witten and Sander (Witten and Sander 1981), ag-
gregates grow as self-similar fractal patterns ramifying due to the irreversible sticking
of particles introduced in a random motion to the aggregate. This gives a fractal di-
mension D ≡ lnN/ ln k = 2.5, where N is the number of particles in the aggregate
and k is the ratio of aggregate size to a particle size. Fluidized bed settling experi-
ments (Valverde 2013) performed on conditioned fine powders with varying particle
size (from dp ∼ 7µm to dp ∼ 20µm) revealed that the fractal dimension of the aggre-
gates in the fluidized bed was close to D = 2.5 in accordance with the DLA model of
Witten and Sanders.

THE MAXIMUM SIZE OF STABLE BUBBLES
In their study on fluidlike liquid-fluidized beds, Harrison et al. (Harrison et al.

1961) formulated a simple model to account for isolated bubbles stability. These au-
thors hypothesized that a bubble was no longer stable if its rising velocity Ub exceeded
the terminal settling velocity of an individual particle vp0. This hypothesis allowed
them to estimate the largest stable size Db of isolated bubbles by means of a simple
equation

Db

dp
≃ 1

160

(ρp − ρf )
2gd3p

µ2
(2)

where ρp is the particle density, ρf is the fluid density and µ is the fluid viscosity.
The Harrison et al. equation (Eq. 2), which was originally formulated to study the
behavior of liquid-fluidized beds of noncohesive beads, can be modified to account for



the similar behavior exhibited by gas-fluidized beds of dynamic aggregates in order
to estimate the ratio of the largest stable size of gas bubbles relative to the aggregate
size d∗. The modified equation that results from the balance of the rising velocity of a
gas bubble to the terminal settling velocity of an aggregate v∗ = vp0N/k is (Valverde
2013)

Db

d∗
≃ 1

160

ρ2p g d
3
p

µ2
Bo(2D−3)/(D+2)

g (3)

where the equation for the equilibrium size of dynamic aggregates (Eq. 1) has been
used. We should expect bubbling fluidization for Db/d

∗ & 10, whereas for Db/d
∗ .

10, it is likely that the small gas bubbles developed do not coalesce into large bubbles
for a range of gas velocities in which the bed would exhibit nonbubbling fluidization
behavior. As the gas velocity is increased and, consequently, the concentration of these
small gas bubbles is increased, it should be expected that the coalescence mechanism
leads to the onset of macroscopic bubbling at some critical value of the gas velocity.
Using, as typical values for fine powders (Valverde 2013), F0 = 5nN, dp = 10µm,
and ρp = 1000kg/m3, Eq. 3 gives Db/d

∗ ≃ 4 for fluidization with nitrogen at 300K
(µ = 1.79 × 10−5Pa s), thus predicting a transitional behavior (nonbubbling fluidlike
to bubbling) in agreement with experimental observations (Valverde 2013). From Eq.
3, it is clear that a change of gas viscosity may result in a qualitative change of flu-
idization behavior. For example, we would obtain Db/d

∗ ≃ 1.3 for fluidization with
neon at 300K (µ = 3.21 × 10−5Pa s), which, theoretically, should result in a quali-
tative improvement of fluidization uniformity and a delay (and possibly suppression)
of the onset of bubbling. According to these estimations, when fluidizing with gases
of higher viscosities), and/or powders with smaller particle size it can be Db/d

∗ . 1),
which would indicate that the bubbling regime is suppressed (Valverde 2013).

ON THE QUESTION OF STABILITY
In contrast with the commonly encountered case of gas-fluidized beds stabilized

by yield stresses due to enduring particle networks (Sundaresan 2003), the mecha-
nism that restrains bubbling in gas-fluidized beds of conditioned fine powders must
have a purely hydrodynamic origin. From fluidized bed mixing experiments (Valverde
et al. 2001), the values inferred for the effective diffusion coefficient was seen to in-
crease strongly with gas velocity up to a maximum value coinciding with the onset of
bubbling. According to the experimental values inferred for the diffusion coefficient,
it was estimated that the particle fluctuation velocity might reach a maximum value
which is two orders of magnitude larger than the gas velocity just before the onset of
bubbling. Certainly, such huge fluctuation velocities cannot take place in a hydrody-
namically stable suspension. Thus, in spite that macroscopic bubbles are not visible in
the nonbubling fluidlike regime of conditioned powders, this cannot be a stable state
in the strict sense of the word. Accordingly, local measurements of backscattered light
from the fluidized bed and direct visualization of the free surface of nonbubbling gas-
fluidized beds showed that, in spite of the uniform smooth expansion exhibited in the
fluidlike regime, pseudoturbulent mesoscale structures of size on the order of mm with



short-lived local voids were present (Valverde et al. 2001; Valverde et al. 2003b). As
the gas flow was increased the number of local voids detected per unit time increased
until, at the bubbling transition, local voids coalesced into large amplitude bubbles and
a clear segregation of gas and solid phases occurred (Valverde et al. 2003b). Even
though mesoscale structures did not grow into fully-developed bubbles in the nonbub-
bling interval, their presence alone questions the applicability of hydrodynamic linear
stability analyses to predict the onset of bubbling. In accordance with these empirical
observations, Koch and Sangani (Koch and Sangani 1999) linear stability analysis in-
dicated that the homogeneous state of a fluidlike gas-fluidized bed is always unstable
when the particle-phase pressure is only derived from interparticle interactions via in-
stantaneous hard-sphere collisions and from hydrodynamic interactions. On the other
hand, a detailed study of nonbubbling liquid-fluidized beds manifests also the exis-
tence of short-lived bubble-like voids (Duru and Guazzelli 2002), further indicating
that the nonbubbling regime does not necessarily imply hydrodynamic stability.

According to Wallis stability criterion, bubbles in fluidized beds would be an out-
come of the formation of concentration shocks or discontinuities in particle concentra-
tion when the propagation velocity of a voidage disturbance uϕ surpasses the elastic
wave velocity ue of the bed. Even though Foscolo and Gibilaro (Foscolo and Gibilaro
1984) claimed to invoke the Wallis criterion as a condition for planar shock formation,
which was assumed to be the mechanism leading to bubbling, the Wallis criterion is
simply a particular way of expressing the criterion of linear stability algebraically (as
it was made clear by Jackson (Jackson 2000)). The considerations in the above para-
graph clearly indicate that the transition from nonbubbling fluidlike to bubbling cannot
be analyzed as the departure from a stable state. A large-amplitude phenomenon, such
as bubbling, is beyond the range of linear analysis, which leaves the Wallis criterion
without a well-founded physical justification. In spite of this, it is undeniable that pre-
dictions obtained by Foscolo and Gibilaro were in good agreement with observations
on the initiation of visible bubbling in liquid and gas fluidized beds (Foscolo and Gibi-
laro 1984). Experimental results were also in agreement with the results predicted form
the Wallis criterion under systematic variations of relevant parameters on the bubbling
point of gas-fluidized beds such as pressure, temperature and addition of fines (Fos-
colo and Gibilaro 1987). From this point of view, the Wallis criterion can be taken at
least as an empirical criterion (yet without a theoretical justification) for predicting the
transition to macroscopic bubbling. Using again the equation for the equilibrium size
of dynamic aggregates (Eq. 1), the Wallis criterion modified for gas-fluidized beds of
fine powders would be (Valverde 2013)

u∗
ϕ ≃ ϕ

1

18

ρp g d
2
p

µ
n
(
1− ϕBo(3−D)/(D+2)

g

)n−1
Bo2/(D+2)

g

u∗
e ≃

(
gdpϕBo(4−D)/(D+2)

g

)1/2
u∗
ϕ < u∗

e nonbubbling regime
u∗
ϕ ≃ u∗

e at bubbling onset (4)



In this equation the effects of gas viscosity µ and granular Bond number Bog on the
predicted onset of bubbling become apparent. Eventually, a sufficiently large value
of the gas viscosity and/or small value of the particle size may be reached for which
the predicted particle volume fraction at the bubbling onset tends to zero (ϕb → 0),
which means that the bed would directly transit from the nonbubbling fluidlike regime
to elutriation with full suppression of the bubbling regime. Using Eq. 3 in Eq. 4 it can
be shown that

u∗
e − u∗

ϕ

u∗
e

= 1− 0.7n

(
Db

d∗

)1/2

(ϕ∗)1/2 (1− ϕ∗)n−1 (5)

The boundary between SFB (solid to fluidlike to bubbling) and SFE (solid to fluidlike
to elutriation) behaviors, would be given by min(u∗

e − u∗
ϕ) = 0, which is obtained for

Db/d
∗ ∼ 1. For Db/d

∗ . 1 it would be min(u∗
e − u∗

ϕ) & 0, i.e. the fluidized bed
would transit from the nonbubbling fluidlike regime to elutriation. Interestingly, and in
spite of their different backgrounds, the Harrison and Wallis criteria yield coincident
predictions for bubbling suppression conditions. Thus, Db/d

∗ ∼ 1 can be used as a
simple criterion to delineate the SFB-SFE boundary. A physical interpretation for the
SFE behavior would be that local gas pockets in the fluidlike regime cannot reach a
macroscopic size before elutriation of the aggregates takes place.

THE JAMMING TRANSITION
In the limit of small gas velocities the fluidlike nonbubbling regime would be lim-

ited by jamming of the dynamic aggregates. At the fluid-to-solid (jamming) transition,
these aggregates jam in a weak solid-like structure characterized by a particle volume
fraction ϕJ that, using Eq. 1, can be related to the granular Bond number Bog (Valverde
2013)

ϕJ = ϕ∗
Jk

D−3 ≈ ϕ∗
JBo(D−3)/(D+2)

g (6)

where ϕ∗
J is the volume fraction of the jammed aggregates. Since dynamic aggregates

can be considered as low cohesive effective spheres, ϕ∗
J must be close to the random

loose packing of noncohesive spheres at the limit of zero gravitational stress (ϕ∗
J <∼

0.56) (Valverde et al. 2004). The bed will transit from the fluidlike regime to the
solid-like fluidization regime (Geldart A) when ϕ ≃ ϕJ . If Eq. 4 had a solution for
ϕ = ϕ0 & ϕs, where ϕs is the particle volume fraction of the powder in its initial
settled state, it should be expected that the fluidized bed transits directly from the
initial (not expanded) state to the bubbling regime as soon as gas velocity surpasses
the minimum fluidization velocity (this is the typical Geldart B behavior). In the case
that ϕ0 = ϕb < ϕs, the system could exhibit an expanded nonbubbling fluidized regime
and expand up to reach a particle volume fraction ϕ = ϕb. If ϕb < ϕJ , the bed might
show a fluidlike regime window and a transition to bubbling at higher gas velocities
(SFB behavior). The existence of a nonbubbling fluidlike regime depends however on
the necessary condition Db/d

∗ . 10. Otherwise, the local gas bubbles in the fluidlike
regime reach a macroscopic size resulting in visible bubbling just above the jamming
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FIG. 1. Phase diagram determining the transition between the types of
fluidization behavior as a function of particle size. Left axis: particle
volume fraction at the jamming transition ϕJ and at the transition to bub-
bling ϕb. Right axis: Ratio of the maximum stable size of a gas bubble
to particle size. Typical values used are ρp = 1135kg/m3, ρf = 1kg/m3,
µ = 1.79× 10−5Pa s, F0 = 2nN, g = 9.81m/s2, ϕ∗

J = 0.51, and D = 2.5. Exper-
imental data on the jamming and bubbling transitions for fluidized beds
of conditioned xerographic toners are shown.

transition (in that case the bed would transit from the solid-like expanded fluidized state
to bubbling: Geldart A behavior). Lastly, if Eq. 4 has no solution (u∗

e > u∗
ϕ ∀ϕ > 0 or,

equivalently, Db/d
∗ . 1), the system is expected to transit from the solid-like regime to

a fluidlike regime and from the fluidlike regime to elutriation (SFE behavior). Visible
bubbles would be fully suppressed in this type of fluidization.

THE MODIFIED GELDART’S DIAGRAM
In Fig. 1 the solution of Eq. 4 (particle volume fraction at the onset of bubbling

ϕb), the solution of Eq. 6 (particle volume fraction at the jamming transition ϕJ ), and
the ratio of bubble maximum size to aggregate size (Db/d

∗ from Eq. 3) have been
plotted vs. particle size dp. The (typical) values used for the physical parameters
intervening are ρp = 1135kg/m3, µ = 1.79 × 10−5 Pa s, F0 = 2 nN, ϕ∗

J = 0.51
and D = 2.5 (Valverde 2013). These values correspond to fluidization of xerographic
toners of varying particle size in the range 7.8 µm . dp . 19.1 µm, using dry nitrogen
at ambient conditions. Data of ϕJ and ϕb from experiments on the jamming (Valverde
et al. 2004) and bubbling (Valverde et al. 2003a) transitions for these powders have
also been plotted. As can be seen, there is good agreement with the calculated values
of ϕJ and ϕb. From Fig. 1 Geldart B behavior would be predicted for dp & 70µm
(the bed cannot expand before the onset of bubbling to a value of ϕJ smaller than
ϕb), Geldart A behavior for 20µm. dp . 70µm (in this range ϕJ < ϕb, the bed
expands without bubbling up to ϕJ but large bubbles are developed in the fluidlike
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FIG. 2. Effect of interparticle force (a), gas viscosity (b), particle density
(c) and effective acceleration (d) on the transition between the types of
fluidization behavior as a function of particle size. Viscosity of several
gases at ambient pressure and temperature are indicated in the vertical
axis of (b). The symbols indicate the predicted behavior for a 7.8µm par-
ticle sized xerographic toner (ρp ≃ 1135kg/m3, F0 ≃ 2nN), showing that
the SFB behavior, for fluidization with nitrogen, would shift to SFE be-
havior for fluidization with neon as reported experimentally. The inset of
(b) shows the particle volume fraction predicted vs. experimentally mea-
sured for FCC and a Canon CLC700 toner (ρp ≃ 1200kg/m3, dp = 8.6µm)
fluidized with different gases (indicated) at ambient conditions.

regime since Db/d
∗ & 10), SFB behavior for 6.7µm. dp . 20µm as observed for the

powders tested (the bed can expand in a nonbubbling fluidlike regime since Db/d
∗ .

10 but bubbles are developed when a particle volume fraction ϕb is reached), and SFE
behavior for dp . 6.7µm (there is a full suppression of the bubbling regime, ϕb → 0
and Db/d

∗ . 1). Remarkably, the predicted A-B boundary coincides with the limit
Bog ≃ 1, which according to Eq. 1 is also the limiting condition for aggregation in the
fluidized bed. The criterion Bog ≃ 1 for the A-B boundary was already inferred by
Molerus (Molerus 1982) from his analysis of experimental data, and by Rhodes et al.
(Rhodes et al. 2001) using Discrete Element Modeling.

The effect of interparticle attractive force, gas viscosity, particle density, and ef-
fective acceleration on the types of fluidization behavior boundaries is shown in Fig.
2 (using the same typical values of the rest of parameters as in Fig. 1). Figure 2a



shows the modification in the boundaries between fluidization types as the interparti-
cle force F0 is increased while the rest of parameters are held constant. In agreement
with experimental results, we may predict that enhancing F0 by means of an external
field can shift the behavior from Geldart B to A. For example, the interparticle attrac-
tive force between Geldart B magnetizable spheres can be increased up by application
of a magnetic field, which would change their Geldart B behavior to Geldart A as
seen experimentally (Espin et al. 2011). Likewise, the presence of capillary forces
due to humidification of the fluidizing gas can contribute to an increase of F0 up to
F0 ∼ 103nN in a fluidized bed of fine particles (Schubert 1984), which, according to
the diagram, would shift the behavior from fluidlike to Geldart A behavior as seen in
experiments (Seville and Clift 1984). Interparticle attractive forces may be also in-
creased artificially by using highly adsorbing gases (Xie and Geldart 1995), which sta-
bilizes the (Geldart B) bubbling bed, turning its behavior into stable solidlike (Geldart
A). Figure 2b shows that the SFB-SFE boundary shifts to larger particle sizes as the
gas viscosity is increased. As seen experimentally, a 7.8 µm particle size xerographic
toner would exhibit a transition form SFB to SFE behavior when it is fluidized by us-
ing neon instead of nitrogen (Valverde 2013). A transition to bubbling is observed for
a toner with a slightly larger particle size and larger particle density (Canon CLC700
with ρp = 1200 kg/m3 and dp =8.6 µm). In the case of fresh cracking catalyst (FCC),
with particle size around 50 µm, the observed behavior is Geldart A (Rietema 1991)
as predicted. In Fig2c it is seen that the Geldart A behavior is restricted to moderate to
high density particles. In the case of metallic high density beads, the Geldart B bub-
bling behavior is usually observed when fluidizing with a gas. For light particles the
fluidization behavior would be fluidlike, either nonbubbling or bubbling. This result
agrees with Harrison et al. observations, who reported nonbubbling fluidlike behavior
for fluidization of phenolic micro-balloons (ρp ≃ 240kg/m3, dp ≃ 125µm) with CO2

at high pressure (ρf = 107kg/m3, µ=1.66×10−5Pa s) in the interval 0.3 < ϕ < 0.6 (we
predict onset of bubbling at ϕ ≃ 0.32), and bubbling behavior with CO2 at ambient
pressure (ρf = 1.6kg/m3, µ=1.48×10−5Pa s) in the same interval (we predict onset of
bubbling at ϕ ≃ 0.44) (Harrison et al. 1961). Finally, Fig. 2d leads us to predict that
the nonbubbling fluidlike behavior could be promoted in environments with reduced
gravity.

The modified Geldart’s diagram can be also useful to predict which type of flu-
idization is to be expected for fluidizable nanopowders. Recent works show that gas-
fluidized beds of nanoparticles may exhibit a state of smooth, nonbubbling fluidiza-
tion with high bed expansion, so-called Aggregate Particulate Fluidization (APF) state
(Valverde 2013). In contrast, some nanopowders are observed to transit to a so-called
aggregate bubbling fluidization (ABF) state (Valverde 2013). For example, when silica
nanoparticles (dp = 12 nm, ρp = 2560 kg/m3) are fluidized with nitrogen, APF behav-
ior is seen, whereas ABF behavior is observed for fluidization of titania nanoparticles
(dp = 21 nm, ρp = 4500 kg/m3) (Zhu et al. 2005). According to the nomenclature
used in this paper, the former state can be identified with the SFE (solid-to fluidlike-
to elutriation behavior) type of fluidization, while the later one is identified with the
SFB (solid to fluidlike to bubbling behavior) fluidization type. Empirical observations



on nonbubbling fluidlike beds of silica nanoparticles have revealed the existence of
complex-aggregates formed by a multi-stage process consisting of aggregation of pre-
existing simple-aggregates (Yao et al. 2002). A nanopowder typically showing this
behavior is Aerosil c⃝R974 (Evonik), which is an amorphous hydrophobic fumed sil-
ica. During flame synthesis, and due to long pathways of primary nanoparticles in
the flame reactor at high temperatures, primary nanoparticles are seen to form frac-
tal aggregates wherein they are permanently held together by strong chemical bonds
because of material sintering (Hyeon-Lee et al. 1998). These aggregates have sizes
on the order of microns. Subsequently, they aggregate further due to attractive van der
Waals forces forming the so-called simple-aggregates of size of the order of tens of mi-
crons. In the fluidized bed, and due to van der Waals forces of attraction between them,
simple-aggregates further aggregate to form complex-aggregates of size of the order
of tens to hundreds of microns and density of the order of tens of kg/m3 (Valverde and
Castellanos 2008; Quintanilla et al. 2012a). Due to the small density of these complex-
aggregates the nanopowder flows easily and can be fluidized by a gas in a bubble-less
uniform state (Valverde and Castellanos 2007). The aggregation process of simple-
aggregates into complex-aggregates may be described similarly to the dynamic aggre-
gation of particles in conditioned fine powders by considering simple-aggregates as
effective particles undergoing a dynamic process of aggregation. Thus, for nanopow-
der fluidization, the effective particles in fluidization are simple-aggregates (Yao et al.
2002). Typical values for the density and size of simple-aggregates for the Aerosil
R974 silica nanopowder are ρs ≈ 50kg/m3 and ds ≈ 30µm (Zhu et al. 2005; Valverde
and Castellanos 2006; Quintanilla et al. 2012a), which would lead us to predict SFE
behavior according to the modified Geldart’s diagram, in agreement with experimental
observations (Valverde 2013). On the other hand, for titania nanopowder, simple-
aggregates are denser (Zhu et al. 2005), which would shift the fluidization behavior to
SFB as also seen experimentally (Zhu et al. 2005).
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NOTATION

Bog granular Bond number

dp particle size

d∗ aggregate size

D fractal dimension

Db largest stable size of an isolated bubble

F0 interparticle attractive force

g gravitational acceleration

gef effective acceleration

k ratio of aggregate size to particle size

K spring constant

mp particle mass

n Richardson-Zaki exponent

N number of particles in an aggregate

p particle-phase pressure

Rc aggregate radius

ue elastic wave velocity

uϕ propagation velocity of a voidage disturbance

Ub isolated bubble rising velocity

vp0 settling velocity of an individual particle

v∗ terminal settling velocity of an individual aggregate

Wp particle weight



GREEK SYMBOLS
β elasticity exponent

ϕ particle volume fraction

ϕb particle volume fraction at the onset of bubbling

ϕJ particle volume fraction at the jamming transition

γ shear strain

µ fluid viscosity

ρ powder bulk density

ρf fluid density

ρp particle density

ρ∗ aggregate density

ϕ∗ volume fraction of aggregates in a fluidized bed
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