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ABSTRACT  
The present study addresses the hydrodynamics of a pilot-scale fluidized bed 
combustor with a focus on the establishment of "Gulf Stream" circulation patterns 
as a solids mixing promoter. Time-resolved pressure signals measured at 
different locations in the bed and in the plenum were analyzed in the time, 
frequency and phase-space domains. Results were matched against qualitative 
characterization of fluidization patterns by visual observation of the bed surface. 

INTRODUCTION  
Self-segregation of fuel particles during devolatilization is detrimental to efficient 
and trouble-free operation of fluidized bed combustors (1). Axial segregation of 
fuel particles may be effectively contrasted by promoting vigorous circulation of 
fluidized solids (i.e. vortices at the reactor scale). Merry and Davidson (2) 
suggested to induce vortices of scale comparable with the bed height (“Gulf 
Stream”) by means of uneven distribution of fluidizing gas at the distributor. The 
hydrodynamics of bubbling fluidized bed has been typically characterized by 
time-averaged and dynamic analysis of pressure signals measured both in the 
plenum and inside the bed. However, the interpretation of time-resolved pressure 
measurements is not a trivial issue. Indeed, the nature of pressure fluctuations is 
the result of both global and local hydrodynamic phenomena related to the 
fluidized bed - bed oscillation, bubbles generation and eruption, bubbles 
coalescence and bubble passage (3-4) - as well as to the dynamic coupling 
between the plenum and the bed (5). The hydrodynamics of fluidized beds is 
often investigated by analyzing time-resolved pressure signals with the tools of 
spectral analysis (4,6-7). It exhibits the characteristics of low dimensional 
deterministic chaos (8), where the dynamic evolution of the system can be 
represented by a “strange attractor” in the phase-space. Takens (9) showed that 
the attractor could be reconstructed from a time series of only one characteristic 
variable of the system. Gas pressure fluctuations measured inside the fluidized 
bed were also used to reconstruct the attractor and to characterize fluidized bed 
dynamics by means of chaotic invariants such as the Kolmogorov entropy (KML) 
and the correlation dimension (D). This study aims at characterizing the 
hydrodynamics of a pilot scale fluidized bed combustor (FBC) with a focus on the 
intentional promotion of "Gulf Stream" flow patterns under a wide interval of 
operating conditions. A pilot scale FBC was revamped to optimize combustion of 
high-volatile solid fuels. The FBC was equipped with a windbox splitted into two 
concentric sections whence two streams of fluidizing gas were independently 
metered to the bed. The hydrodynamic behavior of the pilot scale FBC was 



characterized by analyzing time-resolved pressure signals measured at ambient 
conditions along the fluidized bed and in the annular section of the plenum 
chamber in time and frequency domains and in the state space (5). The 
dynamics of the bed was analyzed as a function of the fluidization velocity (U) 
averaged over the cross section and of the "partition ratio" (Uc/Ua), i.e. the ratio 
between the gas flow velocities in the core and annulus sections of the plenum 
chamber. 

EXPERIMENTAL APPARATUS AND PROCEDURES  
The experimental apparatus is an atmospheric pilot scale 200 kWth FBC (Fig. 1) 
operated at ambient temperature. The AISI 310 stainless steel fluidization column 
has a circular section of 370 mm ID up to 5.05 m above the gas distributor. The 
upper part of freeboard, 1.85 m high, enlarges to 700 mm ID. The total height of 
the combustor is 6.9 m. The lower section of the column is equipped with a 
windbox splitted into two concentric sections: the core (annulus) section 

 
Figure 1 – Schematic representation of FBC-370. PT: pressure transducer. TC: thermocouple. 
GS: gas and particulate sampling port. AMF: air mass flow rate controller. PMF: propane mass 
flow rate controller. EV: electro-valve. PR: pressure transmitter. ZR: zirconia probe tap. VA01: 

cooling air valve. HT: spark generator. BI01: integrated safe flame scanner. 



accounting for 30% (70%) of the column cross-sectional area. The distributor 
plate is equipped with 55 bubble caps. The fluidization column is fitted with 
multiple ports for temperature, pressure, and gas sensing probes. Figure 2 
reports a schematic representation of the diagnostic apparatus. Pressure inside 
the bed is measured by 2 probes located at an elevation z = 170 mm above the 
gas distributor. The probes are made of AISI 304 stainless steel tubes (4/6 mm 
ID/OD): the “core” probe is located at the center of the core section, the “annulus” 
probe is located at a distance from the axis averaged between the inner and 
outer radii of the annular section. A fine mesh net is fitted to the tube tip to 
prevent solids flow into the probe. Pressure measurement in the plenum is 
accomplished by means of a pressure probe located in the annular region of the 
windbox. Visual observation of the bed surface is possible through a quartz 
window located at the top of the column and video recordings are made using a 
Canon XH-A1 video camera. Piezoresistive transducers (DRUCK PMP 5063) 
measured the time-resolved pressure signals. A National Instruments 9215 16-bit 
simultaneous analog input module - coupled with a National Instruments cDAQ-
9174 USB chassis - is used as A/D converter. Each time series is sampled at 1 
kHz for 120 s Bed inert material is quartz (0.950 mm Sauter diameter, Umf=0.5 
m/s). The bed inventory is kept constant at 40 kg, corresponding to a static bed 
height of 0.28 m. Tests are carried out at four values of U: 0.7 m/s, 0.8 m/s, 1.0 
m/s, 1.2 m/s and variable partition ratio, Uc/Ua.  

Data analysis procedure 
Pressure time series were analyzed in time, frequency and phase-space 
domains. Time domain analysis: the average absolute deviation and the average 
cycle frequency (evaluated as the inverse of the average cycle time) were 
calculated. The first one is a robust invariant which quantifies the average 
amplitude of fluctuations even if the probability distribution of the time series is 
not very similar to a normal distribution, whereas the second one is a measure of 
the time scale of the signal. Frequency domain analysis: Power-Spectrum-
Density (PSD) function of the pressure signals measured inside the bed 
(calculated using Welch’s method (10)) were decomposed - according to the 
method proposed by van der Schaaf et al. (7) - into two components: the 
coherent part (fluctuations measured also in the plenum) and the incoherent part. 
The incoherent spectrum of the two pressure signals sampled inside the bed was 

further decomposed (4) into 
two sub-parts: the “joint 
incoherent” part, that 
represents the local 
fluctuations registered by 
both signals sampled inside 
the bed, but not in the 
plenum, and the ”exclusive 
incoherent” part, that 
represents the local 
fluctuations registered by 
only one of the two signals. 
The standard deviation of 
the different components of 
the PSD was also evaluated. 
The state space analysis of Figure 2 – Schematic representation of FBC-370 

diagnostic apparatus. 



pressure signals was implemented on the basis of the reconstruction of the 
attractor and of the evaluation of the chaotic invariants: the Kolmogorov entropy 
(the rate of loss of information of the system) estimated using a maximum-
likelihood (ML) procedure developed by Schouten et al. (11), and the correlation 
dimension of the attractor (degrees of freedom of a dynamic system) estimated 
by the method developed by Schouten et al. (12) from a noisy time series. The 
non-linear analysis was performed by programs developed in MatlabTM 7.9.0, 
according to the algorithm described by vander Stappen (13). The program 
results were successfully compared to the outputs of the software package 
RRCHAOS (14), in order to validate the scripting in Matlab® 7.9.0. 

RESULTS AND DISCUSSION 

Visual observation of the bed surface 
Figures 3 and 4 show two sequences of snapshots of the bed surface captured 
at: ambient temperature, U=0.8 m/s, two partition ratio Uc/Ua=0.04 and 24.4. It 
can be observed that: i) for low values of Uc/Ua, bubble bursting was mainly 
concentrated in the annular section of the bed (Fig. 3), even if some bubble 
eruptions occurred also in the core region, probably due to 
meandering/coalescence of bubbles; ii) for high values of Uc/Ua almost 
continuous ejection of bed solids occurred in the central region of the fluidized 
bed, as a result of the eruption of multiple bubbles. 

Frequency Domain Analysis of pressure signals 
Figure 5 reports the PSD function of pressure signals measured in the core, 
annular and plenum section of the FBC as a function of Uc/Ua for two values of U: 
0.8 m/s (Fig. 5A, B, C) and 1 m/s (Fig. 5D, E, F). The PSD analysis at U=0.8 m/s 
highlights: i) a dominant frequency detected at 2–4 Hz; ii) a secondary frequency 
evident at 4–6 Hz; iii) the frequency and the power of the dominant phenomenon 
increased with Uc/Ua; iv) the power of the secondary frequency raised with Uc/Ua, 
more in the core section than in the annular and plenum sections. The PSD 

  

Figure 3 – Images of bed surface captured at U=0.8 m/s and Uc/Ua=0.04. 

 

Figure 4 – Images of bed surface captured at U=0.8 m/s and Uc/Ua=24.4. 



functions at U=1 m/s were similar to those calculated at U=0.8 m/s. The analysis 
of the PSD functions suggests that both dominant and secondary frequencies 
were related to coherent phenomena because they were also active in the 
plenum. The dominant one was the "natural frequency" of the fluidized bed (the 
piston-like bed oscillation), whereas the secondary one was related to the 
eruption of bubbles in the core section. The relative relevance of these 
phenomena changed with gas partitioning at the windbox: the eruption of gas 
bubbles at the surface of the core section became dominant as Uc/Ua was 
increased, when most of the fluidization air was fed to the core section. This 
finding agrees with qualitative patterns from video recordings and snapshots in 
Figure 4. The PSD analysis at U=1 m/s confirmed the features observed at U=0.8 
m/s, with the exception of less marked effects of partition ratio on both the 
dominant and secondary frequencies.  
Spectral decomposition of the pressure signals measured in the core, annular 
and plenum sections allowed to calculate the standard deviations of the 
incoherent part of in-bed pressure signals (7) as well as the joint incoherent 
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standard deviation (4) relative to incoherent part measured both in the core and 
in the annulus. The standard deviations are reported in figure 6 as a function of 
Uc/Ua for different values of U. Data analysis at U=0.7 m/s highlights: i) the 
standard deviation of the “core” signal strongly increased with Uc/Ua; ii) the 
standard deviation of the “annulus” signal weakly decreased with Uc/Ua. 
Increasing U, the trends of standard deviations with Uc/Ua were very similar to 
those observed at U=0.7 m/s, but the relevance of Uc/Ua on the incoherent part of 
the signals became less and less significant. Taking into account that the 
incoherent part of pressure fluctuations represents the local dynamics close to 
the pressure probes and the relative standard deviation represents its “power”, 
the trend of standard deviations demonstrates that the number and the size of 
the bubbles can be selectively increased in the core section by increasing Uc/Ua, 
hence the establishment of “Gulf Stream”. At same time, the joint incoherent 
core-annulus standard deviation shows that a local phenomenon, (bubble 
passage or coalescence) occurring in the core section of the fluidized bed, 
generated a pressure wave of moderate power which increased with Uc/Ua.  

State Space Analysis of pressure signals 
Figure 7 reports the Kolmogorov entropy (KML) as a function of Uc/Ua for different 
values of U, expressed in terms of bits of information lost per second (Fig. 7A 
and B) and bits of information lost per cycle (Fig. 7C and D). KML decreased with 
U both in the annulus and in the core: the predictability of the system increased, 
probably because the average bubble size increased with U. Indeed, the average 
absolute deviation of the signal increased with U, while the average cycle 
frequency remained almost constant. KML decreased with Uc/Ua in the annulus, 
whatever the reference time (Fig. 7A and C), indicating that bubbles erupted less 
frequently in the annular zone when the fluidizing gas was fed mainly in the core 
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Figure 6 – Standard deviations of incoherent part and joint incoherent part of core and annulus 

pressure signals as a function of Uc/Ua for different values of U. 



section of the windbox. 
KML slightly increased with Uc/Ua in the core when expressed in bits/sec (Fig. 7B), 
and was nearly constant when expressed in bits/cycle (Fig. 7 D). These trends of 
KML indicate that the central zone of the bed became more ‘chaotic’ when Uc/Ua 
increased even if the loss of information during the average cycle in the core 
section did not change significantly. Since the rate of loss of information is mainly 
related to the eruption of bubbles at the surface of the bed, the Kolmogorov 
entropy measured by both probes indicates that: i) bubbles erupt more frequently 
in the core region for high values of the partition ratio; ii) bubble size in the core 
region is only slightly affected by Uc/Ua, because the entropy per cycle measured 
by the core probe is almost constant. Moreover, the core entropy is nearly always 
higher than the annulus entropy, when expressed in bits/sec (Fig. 7A and B): this 
implies that eruption of bubbles in core region is always present even for very low 
values of Uc/Ua. The presence of a radial profile of entropy (15) is consistent with 
the establishment of vortices of scale comparable with the bed height (“Gulf 
Stream”). The differences between the core and annulus entropies can be 
emphasized by tuning the partition ratio, enhancing the effect of these vortices. 

CONCLUSIONS 
The hydrodynamics of a pilot scale fluidized bed combustor (FBC) equipped with 
a windbox compartmented into a core and an annular sections was characterized 
at ambient conditions. The tools were: a) visual observation of the fluidization 
patterns at the surface of the bed, and b) spectral and non-linear analysis of 
pressure fluctuations measured in the core and annular section of the fluidized 
bed and in the plenum. Frequency domain and state space (Kolmogorov entropy) 
analysis proved to be effective tools to detect the establishment of "Gulf Stream" 
flow patterns. These could only be established for high values of the partition 
ratio Uc/Ua when most of the fluidizing gas is fed to the core section. 
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