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ABSTRACT  
The aim of this work was to study the hydration-reactivation behaviour of spent 
sorbents from a calcium looping (CaL) process. The changes of the sorbent 
properties induced by hydration, the regeneration of the CO2 capture capacity 
and the attrition tendency of the material once reused in the CaL cycle were 
investigated. Results suggested that the sorbent should be hydrated for times as 
short as possible compatible with complete chemical hydration. In fact, long 
hydration times bring about cramming (chemical sintering) phenomena, lower 
enhancement of the active porosity, increased attrition tendency and reduced 
reactivation. 

INTRODUCTION  
Global warming due to anthropogenic CO2 emissions is stimulating the 
development of novel combustion and gasification technologies ready for carbon 
capture and sequestration (1,2). The calcium looping (CaL) cycle, illustrated in 
Fig. 1, is based on the alternated temperature-swing uptake (in a fluidized bed -
FB- carbonator) and release (in a FB calciner) of carbon dioxide from a calcium-
based sorbent (e.g., limestone). This technology has reached the maturity of the 
demonstration stage. Reviews on this topic can be found in (3,4). In the 
carbonator, CO2 in the flue gas is captured by CaO at around 650–700°C 
following an exothermic reaction. Thus, the carbonator emits a CO2-depleted flue 
gas and a spent sorbent stream (a CaCO3/CaO mixture, since carbonation is far 
from being complete) that can be fed to the calciner for the endothermic 
regeneration at around 900–950°C. This step yields a CO2-rich flue gas (ready 
for further processing and storage) and regenerates the CaO-based sorbent. The 
CO2 capture capacity and rate of the sorbent are progressively decreased by 
deactivation phenomena occurring over iterated looping, mainly due to sintering 
(5). Another issue is the competition between CO2 and SO2 in the flue gas (6–8). 
It is well known that CaO-based sorbents quickly react with SO2, most often 
according to a core-shell conversion pattern (9,10). Sulphation brings about a 
loss and deactivation of Ca otherwise available for CO2 capture. Moreover, 
limestone-based sorbents undergo attrition/fragmentation phenomena during FB 
processing. These phenomena result in the change of the granulometric (and 
residence time) distribution of the sorbent in the reactor and in a net calcium loss 



from the circulating loop as elutriable fines. Sorbent attrition, which has been 
thoroughly characterized with reference to FB desulphurization (11–13), is 
relevant also in the context of CaL (8,14–16). Optimal management of the CaL 
cycle implies continuous make-up of fresh limestone, to compensate for 
deactivation and attrition, and purge of spent sorbent. Landfilling of spent 
limestone is problematic due to the CaO-rich composition of this residue (17–19). 
The potential of spent sorbent from CaL as source of raw material in the cement 
manufacture is under scrutiny. An attractive alternative (from both environmental 
and economic points of view) is the regeneration of the CO2 uptake capacity by 
hydration-induced reactivation of spent sorbent (20–23). This process, 
extensively studied in the past with reference to spent sorbents derived from flue 
gas desulphurization (24–27), is based on the CaO conversion to Ca(OH)2, that 
gives rise to an increase in the molar volume from 16.9 cm3 mol–1 (CaO) to 33.7 
cm3 mol–1 (Ca(OH)2) and to a density decrease from 3.32 g cm–3 (CaO) to 2.20 g 
cm–3 (Ca(OH)2). Swelling of CaO due to hydration is followed by dehydration of 
Ca(OH)2 as the reactivated material is re-injected into the FB reactor. The 
resulting material is essentially CaO characterized by large specific surface area 
and porosity, and hence is more reactive toward acid gases (CO2/SO2) than the 
parent spent material. This double looping process is outlined in Fig. 2. Typically, 
spent sorbent retrieved from the calciner, hence CaO-rich, is hydrated (without 
the limiting effect related to the significant presence of a hard CaCO3 shell). 
Eventually the reactivated sorbent is re-injected in the carbonator, with a twofold 
benefit: i) the Ca(OH)2 endothermic dehydration reaction occurs in parallel with 
the exothermic carbonation; ii) feeding to the carbonator prevents excessive 
attrition related to fast dehydration and early sintering promoted by the high 
temperature in the calciner. Furthermore, the steam released during dehydration 
could have positive effects on the concurrent, if any, SO2 capture from the flue 
gas in the carbonator. Hydration, however, might bring about enhanced attrition 
propensity of the reactivated material, even if only few results have been reported 
on this topic to date (3,28). Hydration-induced reactivation of spent sorbents from 
CaL processes is a largely unexplored research topic that deserves investigation. 
Key issues are the changes in the sorbent physico-chemical properties induced 
by hydration, the regeneration of the CO2 capture capacity, the influence of the 
sorbent regeneration on the attrition tendency of the material once reused in the 
looping cycle. These issues have been investigated in the present study with 
reference to an Italian limestone candidate for application in CaL. 

 
Figure 1: The calcium looping process. 



 
Figure 2: The double looping process for sorbent reactivation in CaL systems. 
 
EXPERIMENTAL  
The raw sorbent used in the tests was an Italian high-calcium limestone 
(Massicci). The test rig was a bubbling FB lab-scale reactor made of stainless 
steel, 40 mm ID. The reactor, operated at atmospheric pressure, was electrically 
heated and equipped with purposely designed filters that enabled time-resolved 
collection of elutriated fines at the exhaust. Details on the sorbent properties and 
the reactor are reported elsewhere (8,16). A cyclic sequence of five 
calcination/four carbonation stages was performed, starting with the raw sorbent 
(20 g sieved in the size range 0.4–0.6 mm). Each calcination step was carried out 
at 940°C for 20 min fluidizing the reactor at 0.7 m s–1 with a gas containing 70% 
CO2 (balance air). Each carbonation step was carried out at 650°C for 15 min 
fluidizing the reactor at 0.6 m s–1 with a gas containing 15% CO2 (balance air). 
Both calcination and carbonation stages lasted until completion. The CO2 
concentrations in the fluidizing gases were set at values corresponding to 
realistic operating conditions. The reactor, loaded with a bed of sand (150 g, 
0.85–1 mm), was pre-heated to 940°C prior to feeding the batch of limestone. 
After calcination, the bed was rapidly discharged and the mixture sand/sorbent 
was separated by sieving. Then the reactor was cooled down to 650°C and 
loaded with sand. Once thermal equilibrium was approached, the sorbent was 
loaded. This procedure was repeated for each cycle. During the experiments, the 
rate of fines generation was measured (time-resolved data not reported for 
brevity), thus allowing to calculate the loss of elutriated material during each 
stage. The particle size distribution (PSD) of the sorbent was determined by 
sieving the bed material after each step. PSD analysis also allowed the 
determination of the mean Sauter diameter dS of the distribution: 
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where xi is the mass fraction of particles having mean diameter di. The CO2 
capture capacity ξ after each carbonation stage was evaluated by working out the 
CO2 concentration profiles at the exhaust (monitored by a continuous analyzer): 

	 = 
 ��
��
�� ��
��

����������
�

��
                  (2) 

where W is a mass flow rate and m0 the initial mass of sorbent. Deactivated 
sorbent particles (spent sample S, retrieved after the 5th calcination) were 
reactivated by liquid-phase hydration in a thermostatic bath kept at 25°C. 
Batches of S (10 g) blended with a large excess of distilled water (water/solid 
weight ratio=25) were charged to sealed polyethylene bags and put in the 
thermostatic bath for curing times of 10, 30 and 60 min (samples water hydrated 
WHY_10, WHY_30 and WHY_60, respectively). At the end of each hydration 



experiment, samples were retrieved from the bags, vacuum filtered, left overnight 
at 110°C and then stored in a desiccator. Sorbent particles were characterized by 
means of the following experimental techniques: i) nonisothermal 
thermogravimetric (TG) analysis, from room temperature to 1000°C at a heating 
rate of 10°C min–1 under inert atmosphere (Ar) in a Netzsch STA409CD 
apparatus; ii) scanning electron microscopy (SEM) analysis, performed at 
magnifications up to 3000× in a FEI Inspect apparatus; iii) porosimetric analysis, 
carried out in a Micromeritics AutoPore IV apparatus for pore sizes ranging from 
3 nm to 100 µm. In particular, TG analysis allowed calculating the hydration 
degree XH: 

�� = �
�� 

�
��!                               (3) 

where nCaO
H is the number of CaO moles reacted by hydration starting from the 

number of CaO moles present in S (nCaO
S). Reactivated (WHY) material, sieved 

again in the particle size range 0.4–0.6 mm, was re-injected in the FB reactor for 
a new series of looping tests (now starting from the 5th carbonation step and 
ending to the 8th carbonation step), under the same operating conditions held 
before reactivation. Care was taken to make sure that the mass of CaO (not 
carbonated) available for the 5th carbonation, i.e. the first stage after reactivation, 
was the same as that remaining in the sample after the 5th calcination, i.e. the last 
stage before reactivation. 

RESULTS AND DISCUSSION 

Looping Cycles before Reactivation                                                                     
The degree of CO2 uptake after the 1st carbonation was ξ=0.05 g g–1, and it 
decreased to ξ=0.03 g g–1 after the 4th carbonation due to sorbent deactivation. 
The poor values of ξ are related to the choice of a fairly high calcination 
temperature (940°C) coupled with the presence of a high CO2 concentration 
(70%) during calcination, both factors promoting sorbent sintering, as it can be 
observed from the direct comparison with results obtained with the same sorbent 
under less severe operating conditions (16). A PSD having dS=0.39 mm was 
observed after the 1st calcination, consistent with a limited shift toward smaller 
particle diameters with respect to the raw 0.4–0.6 mm sorbent. The amount of 
<0.1 mm in-bed sorbent fines was about 2% by mass. For the material retrieved 
after the 3rd carbonation, it was dS=0.43 mm and the amount of in-bed sorbent 
fines was reduced (about 0.2% by mass). The sorbent attrition behaviour under 
looping conditions was evaluated by analyzing the elutriation data (Table 1). The 
loss of elutriated material during each calcination stage was 0.50±0.30% of the 
initial sorbent mass. Elutriation was more extensive during carbonation 
(1.00±0.37%). This interesting result highlights the major role of the particles’ 
outer shell composition, with respect to that played by operating temperature. In 
fact, even if calcination is carried out at a higher temperature, at the beginning of 
this step sorbent particles are characterized by a hard CaCO3-based shell, which 
would preserve particles from suffering extensive attrition. On the other hand, at 
the beginning of the “colder” carbonation stage sorbent particles are essentially 
made of CaO, softer and more prone to undergo attrition. No evident influence of 
the number of cycles on the elutriation tendency was observed (apart from the 1st 
cycle). After 4 complete calcination/carbonation cycles, the cumulative loss of 
elutriated fines was 5.36% of the inlet sorbent mass. When considering the 
elutriation values, one should take into account that, in this experimental 



campaign: i) the sorbent was discharged from the bed after each stage, then 
cooled down and eventually re-injected into the hot bed for the following step; this 
procedure might have emphasized the thermal stresses suffered by the particles 
with respect to the case in which sorbent particles are continuously looped 
between the two reactors; ii) the duration of each stage was somewhat longer 
than those typical of large-scale looping applications (29). Both aspects could 
have affected the measured values of the elutriation rate as compared with those 
establishing under more realistic looping conditions. 

Table 1: Loss of elutriated material (% of the initial sorbent mass) during each 
calcination and carbonation stage for raw and hydrated sorbent. 

 calcination carbonation 
raw sorbent 1st: 0.20% 1st: 1.37% 
 2nd: 0.79% 2nd: 0.72% 
 3rd: 0.58% 3rd: 0.86% 
 4th: 0.22% 4th: 0.62% 
 5th: 0.30% – 
 range: 0.50±0.30%   range: 1.00±0.37% 
 cumulative after 4 complete cycles: 5.36% 
WHY_10 – 5th: 0.27% 
 6th: 0.74% 6th: 0.69% 
 7th: 1.02% 7th: 1.14% 
 8th: 0.75% 8th: 1.02% 
 range: 0.88±0.14%   range: 0.70±0.43% 
 cumulative after 3 complete cycles: 5.36% 
WHY_60 – 5th: 0.45% 
 6th: 1.50% 6th: 1.14% 
 7th: 0.52% 7th: 1.55% 
 8th: 0.31% 8th: 1.15% 
 range: 0.90±0.60%   range: 1.00±0.55% 
 cumulative after 3 complete cycles: 6.17% 

Hydration-Induced Reactivation                                                                     
TG analysis of the samples indicated that the S sorbent was mostly composed of 
CaO with some residual CaCO3 (9.8%wt) that was left unconverted after the last 
(5th) calcination. The hydration degree of the water-reactivated samples 
increased from XH=52.4% for WHY_10 to XH=55.2% for WHY_60, suggesting 
that chemical hydration is fairly fast and practically complete after the first 10 min. 
Further increase of XH was likely hindered by the spent sorbent chemical (e.g., 
presence of residual CaCO3) and physical (e.g., reduced porosity of the sintered 
S sample) properties. Fig. 3 reports selected SEM micrographs of the samples. 
Visual comparison of the morphology of S and WHY samples indicates that 
hydration brought about an increased degree of “softness” of the external surface 
of the samples. Quantitative considerations were obtained by analyzing 
porosimetric results, which were referred to the pore size range finer than 200 
nm, since it has been reported in the literature (30,31) that this is the range 
mostly affected by sintering/deactivation phenomena upon cycling. Therefore, in 
order for hydration to be effective, it must restore this “fine” porosity. The 
cumulative specific “fine” porosity was 65 mm3 g–1 for S, and the hydration 
treatment was effective in increasing this porosity: 215 mm3 g–1 (WHY_10), 198 
mm3 g–1 (WHY_30) and 181 mm3 g–1 (WHY_60). The hydration treatment was 



therefore able to induce an intraparticle pore regeneration process which 
underlies reactivation, due to the mechanisms discussed in the Introduction 
section. Moreover, the most pronounced increase in the <200 nm-porosity was 
observed just after 10 min-hydration, while longer hydration times resulted into a 
slight decrease in porosity with respect to that measured for WHY_10. This 
should be related to the competing effects of particle swelling (related to the 
chemical hydration process and, therefore, significant only during the initial 
hydration period) and low-temperature cramming/chemical sintering phenomena 
(relevant for longer hydration times and already observed in (24) when hydrating 
spent sorbents from flue gas FB desulphurization). Hydration results indicated 
that the most interesting reactivated sample is WHY_10, which was subjected to 
further CaL tests. To assess the effect of the hydration time, the performance of 
WHY_10 was compared with that of the potentially less interesting WHY_60 
sample. 

 

Figure 3: SEM micrographs for S (left), and WHY materials at two different times 
(middle, 10 min; right, 60 min). 

Looping Cycles after Reactivation 
Fig. 4 shows the ξ-values obtained for WHY_10 and WHY_60, as a function of 
the number of carbonation stages and with reference to a ξ=0.03 g g–1 baseline, 
the value obtained after the 4th carbonation, i.e. the last carbonation before 
hydration. Results confirmed the effectiveness of the hydration treatment in 
regenerating the sorbent activity toward CO2 capture. In particular, ξ decreased 
from 0.35 to 0.08 g g–1 (WHY_10) and from 0.19 to 0.03 g g–1 (WHY_60) along 
with the carbonation stages, highlighting that deactivation phenomena occurred 
also for the reactivated materials. WHY_10 sample resulted more effective in 
CO2 capture than WHY_60, and this should be mostly ascribed to the larger 
porosity achieved when hydrating for short hydration times, so to exploit the 
“chemical” hydration effect without suffering the long-term “physical” cramming 
effect. For WHY_10, PSD results showed that particle fragmentation was limited 
during the 5th carbonation (dS=0.44 mm; cumulative mass of in-bed sorbent finer 
than 0.1 mm accounting for about 0.6% by mass). Fragmentation phenomena 
could be somewhat appreciated during the 6th calcination (i.e., the first calcination 
after reactivation), with dS=0.38 mm and a fractional mass of fines of about 1.3%. 
This was ascribed to the more severe conditions to which the reactivated sorbent 
underwent upon its first calcination, in terms of thermo-mechanical shocks. For all 
the other cycles, the PSD did not show significant changes, even if a somewhat 
larger fragmentation tendency was observed along the cycles: altogether, dS in 
the range 0.34–0.44 mm and an amount of fines in the range 0.6–1.5% were 
recorded. Similar considerations hold for WHY_60: dS=0.44 mm and 0.6% fines 
after the 5th carbonation, dS=0.40 mm and 1.0% fines after the 6th calcination and, 



in general, dS in the range 0.36–0.44 mm and an amount of in-bed fines in the 
range 0.3–1.3%. Table 1 reports elutriation data for the reactivated materials. 
The loss of elutriated material during each calcination and carbonation stage was 
0.88±0.14% and 0.70±0.43%, respectively, for WHY_10, and 0.90±0.60% and 
1.00±0.55%, respectively, for WHY_60. The cumulative loss of elutriated fines 
after 3 complete calcination/carbonation stages (therefore, discarding the datum 
relative to the 5th calcination) was 5.36% and 6.17% for WHY_10 and WHY_60, 
respectively. These data: i) confirm the general trend concerning greater losses 
of elutriated material during carbonation, as already discussed; ii) highlight that 
soaking can induce a greater attrition tendency for WHY_60 material; iii) reveal 
that hydration can moderately emphasize the sorbent attrition tendency when 
compared with the raw material. It can also be noted that the lower CO2 capture 
capacities shown by WHY_60 can determine a less-marked formation of a hard 
CaCO3-based shell upon carbonation, and this effect partly adds on soaking in 
making WHY_60 more attritable than WHY_10. These results highlight the 
relationships between CO2 capture capacity, surface properties and attrition 
tendency. Altogether, results suggest that the sorbent should be hydrated for 
times long enough to get a substantially complete chemical hydration, but short 
enough to avoid soaking and cramming phenomena, lower enhancement in the 
active porosity, increased attrition tendency and reduced reactivation. 
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Figure 4: CO2 capture capacity for the reactivated WHY_10 and WHY_60 
samples as a function of the number of carbonation stages (the 5th carbonation is 
the first carbonation step after hydration). 
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NOTATION 
d particle diameter [m] t time [s] 
dS mean Sauter diameter [m] W CO2 mass flow 

rate 
[g s–1] 

m0 initial mass of sorbent [g] x mass fraction of 
particles 

[g g–1] 

nCaO
H number of CaO moles 

reacted by hydration 
[mol] XH hydration 

degree 
[mol mol–1] 

nCaO
S number of CaO moles 

present in the spent sample 
[mol] ξ CO2 capture 

capacity 
[g g–1] 
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