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ABSTRACT  
The present work focuses on the development of a novel computational code 
able to predict with a reasonable level of accuracy the bubble behavior in gas 
fluidized beds with minimum computational demands. The code simulates the 
bubble chaotic rise motion and coalescence along bed height via simple 
lagrangian tracking of bubbles. An original empirical model for the assessment of 
bubble-bubble interactions is developed. The code is used to simulate a lab-scale 
unit in bubbling and slugging mode. On this basis, fast simulations are performed 
to successfully predict bubble population and fluxes within the bed. 

The main aim of this code is to be embedded within CAPE codes for the process 
simulation. The model adopted by the code is also well suited for multi-scale 
modeling approach since physical parameters can be obtained from both 
experimental data or CFD simulation.  

Preliminary results of the simulations, in terms of distributions for bubble size and 
number as well as local hold up values, are compared with relevant experimental 
data. 

Keywords: modeling; discrete bubble model; numerical simulation; 2D; 

INTRODUCTION  
Modeling of fluidized bed equipment is an open task, mainly because of the 
complexity of the physical phenomena involved. Different classes of model have 
been developed in the past. Empirical models are those where simple correlation 
are developed on the basis of experimental data. Such models, very simple to 
use, often offer poor reliability for design and scale up, being normally highly 
dependent on the geometry and the scale of the experimental set-up adopted for 
the experiments. Semi-Fundamental models are those developed at a length 
scale smaller than the whole system, but larger than particles, where mass, 
momentum and energy balances (coupled with the suitable closure relations to 
model fluid turbulence, among others) are solved numerically in order to predict 
the complex behaviour of the system. These models (Eulerian-Eulerian models, 
Eulerian-Lagrangian models) are actually the most used, since reliable 
predictions can be obtained even if large computational times are required. The 
reliability of these models is strictly related to the closure relations adopted. 
Fundamental models directly solve microscopic mass, momentum and energy 
balances, without the need for any closure relation. Fluid turbulence and relevant 
interactions with particles are directly simulated. These models are not actually 
available to simulate even lab-scale systems, due to the enormous computational 
time required. 



A recently developed class of models in the field of fluidization studies is that of 
the so called Discrete Bubble Models, in which bubble motion through a 
continuous emulsion phase is modeled and solved, including at the present state 
of development bubble motion and coalescence (1-4). This class of models is 
mainly aimed in setting up very simple and computationally inexpensive 
simulation of bubble population within fluidized beds. In this paper an extremely 
simplified model for bubble-to-bubble interaction description is reported in order 
to allow very fast computation of bubble population. The aim of this contribution is 
the preliminary development of a mathematical model for the description of 
bubbling fluidized bed behaviour, operating at an intermediate scale of detail, 
able to simulate the chaotic behaviour of fluidized beds in a simplest way with 
respect to semi-fundamental models. The model developed is then compared 
with relevant experimental data (5) 

MATHEMATICAL MODELLING 
Discrete Bubble models treats each bubble individually, following its trajectory 
along its path through the bed. The basic of DBM were described elsewhere (1-
4). In order to solve bubble motion through the bed, different physical 
phenomena should be taken in account, each one affecting the history of each 
bubble. In the following some of the most relevant works are reported: 

1. Emulsion phase modeling: a Eulerian description of the emulsion phase 
can be implemented within the code (3) to increase the predictivity of the 
model, but this greatly increases the computational effort. On the other 
hand, it was previously shown that sufficiently accurate simulation can be 
ran without solving solids motion, provided that the relevant effect on 
bubble motion is somehow modeled (1-2,4). In this contribution, a 
stationary emulsion phase is assumed. 

2. Single bubble motion: the velocity of a single bubble rising through a 
fluidized bed was thoroughly investigated in the past (6-7), with different 
correlations developed where bubble vertical velocity mainly depends on 
bubble diameter. The equations adopted are thoroughly discussed in he 
following 

3. Bubble to bubble interactions: in the presence of a bubble swarm, it is well 
accepted that the trajectory of each bubble is strongly influenced by the 
vicinity of other rising bubbles; the passage of a bubble in a fluidized bed 
is in fact associated with a perturbation of the pressure field with respect 
to the repose condition (8). The pressure perturbation located in the wake 
region of the bed is responsible for the capture motion of bubbles and 
thus is one of the principal cause of coalescence (9). A simplified 
mathematical model based on the net effect of neighboring bubbles on 
the bubble trajectory was already adopted in the past (1) for computer 
simulation through DBM. A suitably developed model is here proposed 
and discussed in the following. 

4. Bubble coalescence; the coalescence phenomenon has been extensively 
studied, being the principal cause of bubble enlargement along bed height 
(9-11). In the case of DBM, it is possible to follow different approaches 
(delayed vs non-delayed coalescence, 1) in order to take in account for 
the shape of bubbles. The volume of the bubble formed after coalescence 
may also have a smaller volume than the coalescing bubbles in certain 
conditions (12). In this contribution, non-delayed coalescence is assumed. 



5. Bubble splitting. Bubbles rising in fluidized bed may also undergo splitting, 
eventually leading to measurable maximum stable size before the onset 
of slugging regimes (8). No splitting bubbles are considered hare. 

6. In addition, some modeling is needed to assess the effect of distributor 
design, wall conditions and freeboard region. The relevant equations 
adopted are discussed in the “Boundary conditions” section of this paper. 

Bubble main rise velocity: The principal bubble motion is assumed to be the 
rising motion from the distributor to the bed surface. The bubble rise velocity has 
been extensively studied, and several literature works (6,10) agree in stating that 
bubble rise velocity mainly depends on bubble equivalent diameter: 

 
��

���� = �0.71 → Davidson	�1963�
0.8 ÷ 1 → Shen	�2004�  (1) 

This correlation represents the main velocity for the bubbles. The use of a 
mechanicistic law is compatible with the chaotic behaviour of fluidized beds, if it 
is assumed the presence of perturbation to this motion, due to the interaction 
between non contacting bubbles. 

Bubble coalescence: each bubble is assumed to have constant volume in 
absence of bubble interactions (this consideration implies that the gas 
permeating from the bubble to the emulsion phase is equalized by the gas 
permeating into the bubble from the emulsion phase). Bubbles conserve volume 
through bubble coalescence or splitting (even if some papers show that bubble 
volume is not conserved during coalescence under some circumstances, 12). In 
the simplified model proposed, bubble coalescence occurs if the distance 
between two bubble becomes minor or equal to the half sum of the diameters 
(non-delayed coalescence, 1), giving rise to a bubble whose volume equals the 
sum of the volumes of the coalescing bubbles. Moreover, it is assumed that the 
bubble centroid of the new bubble will lie along the segment connecting the 
original centroids, at a coordinate given by: 

 x#$%,'() = *+,,
*+,,-*+,. x#$%,/ +

*+,.
*+,,-*+,. x#$%,1 (2) 

Weak bubble interactions: bubble vertical trajectory is generally modified by the 
presence of neighboring bubbles, which induce lateral and vertical acceleration in 
the bubble motion. To account for this phenomenon, it is worth reminding that 
each bubble generates a pressure perturbation located in the proximity of its 
wake region (8). The part of the perturbation falling out of the bubble (i.e. in the 
emulsion phase) would be able to drive the other bubbles toward coalescence. 

In this work, a simplified model of the pressure driven attraction generated by the 
i-th bubble on the j-th bubble is proposed (Pressure Driven Velocity Perturbation, 
PDVP). It is physically expected that the attraction intensity would fall rapidly 
toward zero if the distance between the bubbles is increased, and that larger 
bubbles will give rise to more pronounced attraction field with respect to smaller 
bubbles. In particular, the attraction intensity will depend on the mass of both 
bubbles. On these basis, the proposed field assumes the form: 



 ∆P4,5 = −K/ *+,8*+,9
:;<8=<9>.-;?8=?9=@.AB+,8>.

 (3) 

Where K1 is an empirical constant. Since bubbles are considered as spherical, 
and the center of the generated field being located at about 0.2db above the 
bottom of the bubble (approximately near the wake region), the singularity of the 
field falls inside the bubble itself. The pressure field accelerates all other bubbles 
towards the bubble wake region, as it is effectively possible to observe in 
bubbling fluidized beds. This generates the expression reported in Eqn.3 for the 
effective bubble distance in pressure perturbation calculation. In the simplified 
model proposed (induced mean velocity is assumed instead of induced 
acceleration), the velocity induced in a second bubble by the pressure 
perturbation generated by the first bubble is proportional to the pressure gradient 
and is inversely proportional to the mass of the second bubble: 

 
C<D###$
CE = −K1

∇;∆G8,9>
*+,9  (4) 

Where K2 is an empirical constant. Moreover, if N bubbles are present, the 
effects of the field generated by all bubbles except the j-th bubble have to be 
considered as acting on the j-th bubble: 

 
C<D###$
CE = − H.

*+,9 ∇;∑ ∆P4,5J > (5) 

It is worth noting that the empirical constants K1 and K2 are presented as 
separate constants for the sake of clarity, but they can be condensed in a single 
empirical constant. Notably, the trajectory of each bubble depends on the 
position and volume of all other bubbles within the bed. 

In the present contribution, the emulsion phase is treated as a stationary 
continuum, and no splitting mechanism is considered. 

NUMERICAL SIMULATION  
The computational domain have a simple geometry, exactly equal to the height 
and the width of the experimental set-up (H = 36cm, W = 18cm, t = 1.5cm, dp = 
212-250 mm, U = 18-27 cm/s; further details are given in 5).  

Boundary conditions: Upper side of the bed is considered the bubble exit: all 
bubbles having a vertical coordinate greater than the height of the bed are not 
still considered into the computational domain. No particular conditions are 
needed at the lateral walls of the bed, since the PDVD generally directs bubbles 
towards the center of the bed, therefore preventing that bubbles unphysically exit 
through lateral walls, provided that a sufficiently small time steps is adopted. The 
distributor, placed at the bottom of the bed, is modeled in order to generate 
bubbles obeying the TPM. In particular, as a first approximation, the whole gas 
flow exceeding the minimum fluidization velocity results in visible bubble flow. 
The excess gas flow is equally divided to the Nc holes of the distributor. The lift 
off time of the bubble is reached when the gas area of the bubble reaches a 
critical value A0. 



This kind of arrangement gives high level of symmetry in the bed, thus generating 
banal numerical solution of the problem. In order to make visible the full chaotic 
behavior in simulation, the position of bubbles are slightly randomized in both 
vertical and horizontal position (the displacements are an order of magnitude 
inferior to the bubble diameters). As expected, this randomization will lead to full 
chaotic bubble motion. 

The numerical simulation consists in the solution of the position of all bubbles in 
the bed by adopting a first order finite difference. The motion of each bubble is 
computed by firstly imposing the main displacement derived by Eqn. 1, and then 
computing the PDVP dependent displacements as computed by Eqn. 5. After the 
PDVP driven displacements are computed, the bubble coalescence logical 
condition is checked. It is worth noting that since no surface tension exists in 
fluidized beds at the separation layer between bubbles and emulsion phase, the 
coalescence step is not a rate determining one. The same observation is 
reported in the paper by Darton (9), in which is found that bubbles capture motion 
is the rate determining step. 

The results of the simulation of 60 seconds real time can be obtained in few 
second with desktop PC Dell Inspiron 530S dual core. 

RESULTS 
The behaviour of the simulated fluid bed have been analyzed firstly in a 
qualitative fashion, by putting the numerical results in form of graphical maps. 

 

Figure 1: Graphical representation of simulated bubbles at U = 18 cm/s. 

In Fig.1, a sequence of frames thus obtained is reported. The qualitative analysis 
show that the bubbles follow a chaotic behavior, without reaching stable 
configuration, in perfect agreement with experimental observation. Smallest 
bubbles are not reproduced in the snapshot for the sake of meaningful visual 
representation. The bubbles appear to uniformly form at the distributor and move 
toward the center of the bed. Along their path, bubbles coalesce, thus forming 
larger bubbles that move towards the bed exit. It is possible to observe a clear 
decrease of bubble number with the distance above the distributor and a 
significant bubble enlargement, as physically expected. 

The qualitative observations made by visual analysis of the snapshots is 
therefore not sufficient for the validation of the results. A quantitative validation 
can be easily performed by comparing bubble size and position data with 



relevant experimental data from a previous work (5) where full details about the 
experimental set-up and the image analysis technique can be found. 

To assess the ability of the code in correctly simulating bubble sizes, the 
simulated Bubble Sizes Distributions (BSD) were computed and reported in Fig.2 
in form of probability density functions together with relevant experimental data 
(5). A characteristic positively skewed distribution is found in all cases as 
physically expected. The code is also able to correctly predict the broadening of 
the BSD while increasing inlet gas velocity. 

 

 
 (a) (b) 

Figure 2. Comparison between experimental and simulated data on Bubble Size Distribution within 
the bed (3a: U = 18 cm/s;  3b: U = 27 cm/s). 

In order to validate the code for the prediction of net coalescence rate, it is useful 
to use the computation of the time-averaged bubble density as a function of 
distance along bed height. It is easy to show that a linear decay rate of bubble 
density is found in a semi-logarithmic plot when a first order bubble number 
decay rate is assumed (13). The computational data reported in Fig.3 clearly 
follow a linear decay, as physically expected. It is worth noting the excellent 
agreement between computational and experimental data, in the prediction of 
both slope of the linear decay rate and value of bubble density function. 

 

 (a) (b) 

Figure 3. Comparison between experimental and simulated data on Bubble Number Distribution 
within the bed (4a: U = 18 cm/s; 4b: U = 27 cm/s.) 
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In Fig.4, the analysis of computational time averaged bubble phase hold-up 
allows the visual observation of preferential bubble paths along the bed, with a 
typical reverse-Y shaped pattern starting near the bottom of the bed and 
developing in the upper regions of the bed. The reverse-Y shaped pattern is due 
to the coalescence-driven bubble dynamics prevailing after bubble nucleation in 
the proximity of the distributor in the intermediate region of the bed. The 
comparison of computational maps (Figs. 4a, 4c) with relevant experimental 
bubble phase hold-up maps (Figs. 4b, 4d) highlights an overestimation of local 
hold-up, but the shape appears to be sufficiently well predicted. In particular, the 
overall hold up values in experimental cases were found to be 0.16 and 0.20 at 
U=0.18 m/s and 0.27 m/s respectively, while the relevant simulated data were in 
equal to 0.23 and 0.32 respectively. It is worth noting that this effect can be 
ascribed to the effect of threshold value in experimental bubble measurements 
(5) or, on the other hand, to some of the simplifying hypotheses of the adopted 
model such as (i) bubble constant volume through coalescence or (ii) gas 
troughflow absence. The sensitivity of the model to these hypotheses should be 
carefully checked, and this is one of the main objectives of future works. 

     
 (a) U=0.18m/s, comp; (b) U=0.18m/s, exp; (c) U=0.27m/s, comp; (d) U=0.27m/s, exp; 

Figure 4. Comparison between experimental and simulated data on Local Bubble hold up. Colorbar 
data refers to time-averaged local hold up values. 

CONCLUSIONS 
In this work, a full-in-house developed code has been used to simulate in a 
Lagrangian fashion the behaviour of a bubbling fluidized bed. The model 
implemented in the code makes use of literature correlations and an original 
Pressure Driven Velocity Perturbation model, resulting in the prediction of the 
bubble patterns along bed height. A simple coalescence model has been used in 
order to predict bubble enlargement. The results obtained for the case of 2D 
simulations are compared with experimental data obtained by a purposely built 
2D lab scale gas fluidized bed. The agreement of model predictions with 
experimental data appears satisfactory.  

The Lagrangian simulation thus performed allowed the direct quantification of the 
relevance of the physical phenomena in bubbling fluidized beds, such as the 
fundamental role of inter-bubble interactions in determining bubble behaviour. 

Further developments are expected with the implementation of bubble break-up 
models. 



NOTATION 

• A0; Bubble area at the distributor; 

• db; bubble equivalent diameter; 

• g; acceleration due to gravity; 

• K1, K2; model constants for PDVP; 

• Nc; number of holes at the distributor; 

• Pi,j; pressure driven attraction between generic bubbles; 

• U; gas superficial velocity; 

• ub; bubble rise velocity; 

• Vb; bubble volume; 

• xb; bubble centroid coordinate; 
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