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ABSTRACT  

Similarities have been developed in this paper to decrease computation load of 
CFD-DEM simulation. By applying the similarities, the computation time was 
greatly decreased. The results were verified by both the numerical simulations 
and experiments. 

1. INTRODUCTION  

Fluidized bed has been widely used in industry. Fluidization is complex solid-gas 
two phase phenomenon, and it is essential to simulate it numerically to 
comprehend it. Tsuji et al (1) first employed CFD-DEM (Discrete Element 
Method) to simulate fluidized bed. CFD-DEM has been widely used to simulate 
fluidized bed in recent decades, because its assumptions were simple and it was 
easy to model the complex phenomena on the particle level. But CFD-DEM was 
difficult to apply to large scale fluidized beds, due to the problem of huge 
computation. One effort to decrease computing time was to employ the parallel 
computation. The other effort to decrease computation load was to use large 
particles to represent small real particles, so that, the number of particles in bed 
was decreased and then the calculation load was decreased. There were several 
methods to realize this goal. One method was to apply similarity (2),(3), in which 
the  physical properties of  fluid and particle were adjusted. The other method 
was to change drag acted on particles (4). 

In this paper, the similarities were developed based on (3). Imaginary large 
particles, each of which represented a group of small real particles, were 
employed to decrease computation load. In order to make the movement of 
imaginary particles similar to that of real particles, similarities were deduced as 
explained below. The physical meaning of the similarities was discussed. Both 
numerical and experimental verifications were made. It was shown by validation 
that the similarities were correct and the calculation load can be greatly 
decreased. CFD-DEM could simulate a large scale fluidized bed by applying the 
similarities.  



Real Fluid 

Real Particles 

2. SIMILARITY FOR CFD-DEM SIMULATION  

2.1 DEM Model of Fluidized Bed 

DEM (Discrete Element Method) applied Newtonian dynamical equations to 
compute motion of each particle. The forces acting on a particle in a fluidized bed 
were gravity, drag and contact force (equ. (1)). The contact force was modeled 
as spring dashpot (Fig.1,(1)). 
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2.2 Deduction of Similarities  

The imaginary large particle was K-fold enlarged (equ.(2)) and represented the 
group of real particles (The number of real particles in the group was K3, refer to 
Fig.2). The density of imagery particle kept the same with real particle (equ.(3)). 

          ⁄  
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Our job was to find an imaginary fluid to make the movement of imaginary 
particles similar to that of real particles. If the movement of particles in fluidized 
bed was similar, the Reynolds Number Re and Archimedes Number Ar would be 
the same for both real particles and imaginary particles. Those were  
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In the case that imaginary bed was similar to real bed, the followings would be 
satisfied 
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Friction slider 

Dashpot 

Spring 

(1) 

 Fig.1 Model of contact force of DEM 

force 

Fig.2 Real bed and magimary bed 
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(denoted by “L”) (denoted by “O”) 



and due to LfLP ,,   , OfOP ,,   , the following could be deduced 

        ⁄                                  

          ⁄                                   

If (3), (7) and (8) were satisfied, the imaginary particles would move similarly to 
real particles. We would validate it numerically and experimentally. Before the 
validation, the meaning of dynamic similarities was discussed in the following 
section.  

2.3 Meaning of similarities  

A particle in a fluidized bed was acted on by three kinds of forces, gravity, drag 
and contact forces (equ.(1)). If the forces acting on an imaginary particle were 
equal to the sum of forces acting on the group of real particles which were 
presented by imaginary particle, the movement in imaginary bed would similar to 
that of real bed. The gravity, drag and contact force would be checked in the 
following.  The minimum fluidization velocity was also checked. 
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substituting(3), (7) and (8) into(10),(11), the following could be obtained  
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Minimum fluidization velocity Vmf  
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The gravity and drag acted on the imaginary particle equated to the sum of 
gravity and drag acted on the group of real particles respectively (refer to 
equ.(9),(12)). As the result, imaginary particle and real particle had the same 
minimum fluidization velocity Vmf (refer to equ.(13)).  

Contact force 

It was difficult to equate the contact force acing on imaginary particle with the 
contact force acting on real particles, because the real particles in the same 
group moved in different directions. Fortunately, it was implied in (1) that the 
magnitude of coefficient of spring in the spring/dashpot model (Fig.1) of DEM did 
not greatly affect the behavior of particles. The coefficients of spring and friction 
used for imaginary particles were the same with that of the real particles; we 
hoped that the contact force would be roughly similar for imaginary and real bed. 

3. VERIFICATION OF SIMILARITY BY NUMERICAL SIMULATION  

In order to validate the similarity, numerical simulations of various K (K=1, 
2,4,8,16) were made. It was assumed that the simulation for real particles (K=1) 
was correct. The bubble shapes were compared to those of the real bubble to 
check whether the similarities were correct or not. The sizes of bed were listed in 
Table1. The boundary conditions and initial condition were shown in Fig.3. The 
parameters of various K were list in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Table1 The sizes of bed for numerical validation calculation 
  

(a) Initial position of particles (b) Inlet gas velocity 

V=Vmf V=50Vmf 

Fig.3 Boundary condition and Initial condition  

bed length [m] bed width [m] bed height [m] static bed height [m]

0.32 0.32 0.96 0.32



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bubble shapes  for various K were shown in Fig.4. It was found that the 
bubbles for K=2~16 agreed reasonably with the bubble of K=1. The smaller the K, 
the better the result. The comparison of bubbles showed that the movement of 
particles was similar if the equ.(3), (7) and (8) were satisfied. Calculation load 
was defined as (14) and magnification of load was defined as (15). It was found 
in Fig.5 that calculation load could be reduced by the factor of K-4.3.   

                                                                         (14) 

                                                       ⁄                           (15) 

Table 2 The parameters for validation calculations 

(Central slice of 3D simulation) 
Fig.4 The bubble shapes of various K 

multiple K [-] 1 2 4 8 16

diameter of particle [m] 0.001 0.002 0.004 0.008 0.016

particle density [kg/m3] 2700 2700 2700 2700 2700

fluid density [kg/m3] 1.161 2.322 4.644 9.288 18.576

fluid viscosity [pa/s] 1.86E-05 7.45E-05 2.98E-04 1.19E-03 4.77E-03

spring constant [N/m] 800 800 800 800 800

mesh size [m] 0.002 0.004 0.008 0.016 0.032

number of particles [-] 40,000,000 5,000,000 625,000 78,125 9,765

time step [s] 2.00E-05 5.00E-05 1.00E-04 4.00E-04 8.00E-04

CPU cores used

in parallel calculation
80 40 20 10 5



 

 

 

 

 

 

 

4. VERIFICATION OF SIMILARITIES BY EXPERIMENTS   

The experiments were also done to validate the similarities. A large fluidized bed 
was employed to carry out the experiments. The conditions of experiment were 
listed in table 3. In order to evaluate the simulation quantitatively, the bubble size, 
bubble ascending velocity and bubble frequency were measured at height of 
Z=0.8m. Only large bubbles (diameter larger than 0.15m) were taken count of, 
because the boundary of small bubble was indecisive. The experiment results 
were shown at table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Reduce of calculation load by similarities 

Table 3 The conditions of experiments 

Table 4 The results of experiments at height Z=0.8m  
(only bubbles which were larger than 0.15m were taken count)  

Fig.6 Snapshot of Bubble 

mean bubble size [m] mean bubble ascending velocity[m/s] bubble frequency[-/(s･m)]
0.163 1.09 2.5

(a) Experiment (c) Simulation (K=16) 

bed lengh bed height bed width
mean particle

diameter
particle
 density

superficial
velosity V0

V0/Vmf

[m] [m] [m] [mm] [kg/m3] [m/s] [-]

1 1 0.037 0.29 2610 0.322 4

(b) Simulation (K=4) 



The number of particles in the bed was too much in this case (more than one 
billion particles) to use CFD-DEM simulation. Similarities (K=4 and K=16) were 
applied to simulate the particle movement in the bed and compared with 
experiments. The snapshots of bubble for experiments and simulations were 
show in Fig.6. The comparison of simulation and experiment was shown in Fig.7. 
It could be found that the simulation, in which the similarities were applied, 
agreed with experiment well. The bubbling sizes of simulations were little smaller 
than that of experiment, while the bubble ascending velocity and bubble 
frequency of simulation were a little larger than those of experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flow pattern in the bed was also observed. At a certain time (t=t0), the 
particles at top of bed were marked by black color. The black marked particle 
went downward along walls and central line of bed. Fig.8 showed the snapshot of 
t= t0+5s. The comparison on flow pattern between simulations and experiment 
showed that the similarities-applied CFD-DEM were able to solve the flow pattern 
correctly.  

Fig.8 Flow pattern in the fluidized bed 

(a) Experiment (c) Simulation (K=16) (b) Simulation (K=4) 

Fig.7 Comparison of experiment and simulation 



5. CONCLUSIONS  

The similarities were developed by employed imaginary particles and imaginary 
fluid. The diameter of imaginary particle was K-fold larger than real particle. If 
equations (3), (7) and (8) were satisfied, movement of imaginary particles was 
similar to that of real particles. The similarities were validated by both numerical 
simulation and experiment. The calculation load was greatly decreased by 
applying the similarities. 

SYMBOLS AND SUBSCRIPT  

Ar     Archimedes number 

Dp    diameter of particle [m] 

CF


   contact force [N] 

DF


   drag [N] 

g       gravity accretion 
K       diameter ratio, define as equ.(2) [-] 
m      mass of particle [kg] 
p       pressure [pa] 
Re     Reynolds number 
U       velocity of particle [m/s] 
V       velocity of fluid [m/s] 
V0      superficial velocity of fluid [m/s] 
      minimum fluidization velocity [m/s] 

X


    position vector of the particle center 

        inter-phase momentum transfer coefficient [kg/m2 s] 
         volume fraction of fluid 
       density of fluid [kg/m3] 

       density of particle [kg/m3] 

       viscosity of fluid [pa•s] 

 
Subscript 
f        fluid 
L       enlarged imaginary particle or imaginary field  
O      real particle or real field 
P      particle 
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