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ABSTRACT

Magnetic Resonance Imaging (MRI) was used to image non-intrusively the formation
and interaction of jets and spouts. It was found that the formation and interaction of
jets is critically affected by the particle size and shape, the bed dimensions and the
fluidization history.

INTRODUCTION

Fluidization is the process that transforms a static, packed bed of particles into a liquid-
like state. The bed becomes fluidized when the pressure drop across the bed is equal
to the weight of the bed per cross sectional area. One of the major advantages of
fluidized beds over other gas solid reactors is their excellent heat and mass transfer
characteristics. However, despite their widespread application, fluidized beds are still
only poorly understood on a fundamental level. The poor physical understanding of
fluidized beds can be explained, at least partially, by the small number of measurement
techniques that can probe non-intrusively the dynamics of these systems, e.g. positron
emission particle tracking [1], electron capacitance tomography [2], X-ray attenuation
[3] or magnetic resonance imaging (MRI) [4],[5],[6]. An important phenomenon in
gas-fluidized beds is the formation of jets and spouts since they critically influence bed
mixing as well as heat and mass transfer. Thus, it is important to acquire detailed infor-
mation about the geometry and interaction of jets and and spouts. For example, Rees
et al. [7] studied the geometry of jets described by their jet half angle, their initial angle
of a jet and jet height, forming at multi orifice distributors containing 15 - 37 holes. The
jet parameters determined from the MRI measurements were subsequently correlated
with the orifice velocity and the pitch size. Pore et al. [8] extended the work of Rees
et al. [7] and studied jet-jet and jet-wall interactions. An attractive interaction between
jets and jets and walls was reported for separating distances less than approximately
13 mm. However, an important jetting phenomenon which has not been considered
in fluidized beds is the hysteresis in jet height. Indeed, the pressure drop across the
bed [9],[10],[11] and the packing density of the bed [12] are not only a function of the
gas velocity but also the fluidization history. This hysteretic behavior has also been
observed recently in numerical simulations [13],[11],[10]. In this study we extend the
work of [8],[7] by systematically investigating the effect of bed and particle parameter
on the jetting characteristics.



Figure 1: (a,b,c,d) schematic sketches of the distributor plates and (e,f,g) optical mi-
croscopy images of the seeds used: (e) Iceland poppy seeds, (f) opium poppy seeds
and (g) mustard seeds.

Paticle type Diameter Density Minimum Sphericity1

dp [mm] ρp [kg/m3] fluidization velocity S
Umf [m/s]

Iceland poppy 0.74 ± 0.08 1120 0.17 0.61
Opium poppy 0.94 ± 0.04 1090 0.24 0.84
Mustard 1.34 ± 0.18 1130 0.41 0.98

Table 1: Particle diameter, density and minimum fluidization velocity of the seeds used.

SETUP

The beds (square cross section) were constructed of poly-methyl-methacrylate (PMMA).
The dimensions of the distributor plates used are shown in Fig. 1(a). The size of the
orifice (square cross-section) was kept constant with a side length of Lo = 3.6 mm.
The properties of the seeds used i.e. their diameter, density and minimum fluidization
velocity (Umf ) are summarized in Table 1. The projected cross-sections of the seeds,
obtained using optical microscopy, are given in Fig. 1. It is worth noticing that the
poppy seeds are highly non-spherical, whereas mustard seeds are roughly spherical.
Magnetic resonance imaging (MRI) was applied to image non-intrusively the forma-
tion of jets in a bed of seeds. For a detailed description of the MRI technique the
interested reader is referred to e.g. [15]. Here, MRI measurements were performed
in a Philips 3T Achieva system equipped with dual Quasar gradients. The maximal
gradient strength and slew rate were 40 mT/m and 200 mT/m/ms, respectively. A 2D
spin echo sequence of repetition time 1500 ms, echo time 12.4 ms and flip angle 60◦

was used to image the bed of particles. The voxel size was 1 mm × 1 mm × 1 mm.
The MR signal was obtained from the seeds (grey-coloured voxels) whereas no signal
was obtained from the gas (black voxels).

1S = [(particle volume)/(volume of circumscribed sphere)]1/3 [14]



OBSERVATIONS AND DISCUSSION

Shape of single jets

Fig. 2(a-d) shows jets forming at a single orifice. The jets possess a highly symmet-
rical shape. It was found that the height and the shape of the jets was affected by
(i) the size of the bed particles (ii) the dimension of the bed (iii) and the fluidization
history. For example, the images shown in Fig. 2(a,b) and (c,d) were obtained in a
bed containing, mustard (dp = 1.3 mm) and Iceland poppy seeds (dp = 0.7 mm), re-
spectively. From Fig. 2(a-d) it can be seen that jets forming in a bed of mustard seeds
are wider and higher orifice velocities are required form a jet. The larger jet width in
these, large particle, systems can be explained by an increasing gas expansion angle
with increasing particle size [16], whereas the higher orifice velocities, are probably
due to increased gas leakage with increasing particle size. Additionally, Fig. 2(a-d)
shows that also the dimensions of the bed can dramatically influence the jet geometry,
in particular for the case that jets form in a small bed containing large particles as in
the system imaged in Fig. 2(b). We believe that in these jet height increases due to the
confinement of the gas flow by the side walls, resulting in a bed (partially) approaching
minimum fluidization. Filla et al. [16] measured jet angles in 2D beds and found that
jets forming in beds of larger or particles have wider jet angles. It is assumed that the
increased friction between non-spherical particles result in more “stable” packings and
consequently in smaller jet angles. As shown in Fig. 2(e) the fluidization history of the
bed also influences the jetting behaviour, i.e. if the jet height is plotted as a function
of orifice velocity a hysteresis loop is observed. The hysteresis loop can be explained
by the occurrence of different packing densities in beds subjected to increasing or
decreasing velocities.

Jet-jet and jet-wall interaction

Fig. 3(a) shows jets forming at a distributor containing two orifices. It can be seen that
for these configuration the tips of the jets are pointing towards each other at higher ori-
fice velocities. These particular jet shapes are probably indicative of jet-jet interactions
leading to a ‘merging‘ gas flow at the centre of the bed. Furthermore, at high orifice
velocities the two jets are not of equal height, i.e. the left jet has a height of 19.3 mm
whereas the right jet is 18.2 mm high. However, reducing the orifice velocity to Uo =
8.4 m/s resulted in straight jets of equal height, i.e. 25 mm Fig. 3(b). To prove that that
bending of the jets towards each other is indicative of a jet-jet interaction, one orifice
of the two-orifice distributor was blocked (Fig. 3c) Interestingly, in this configuration the
tip of the jet turned towards the wall, indicating a jet-wall interaction. The distances
between the two orifices and the orifice and the wall are 21.6 mm which is outside the
range for jet-jet and jet-wall interaction given in Pore et al. [8]. Seeds were used as
particles. They differ in size and shape that makes it difficult to identify a single particle
property effecting the interactions. The void above the orifice is induced by the drag
acting on the particles. The formation of multiple jets or the presence of a wall affects
the flow profile of the gas entering the bed consequently also the drag force and the
shape of the jets. As demonstrated by Filla et al. [16] and Koehl et al. [17] also the
sphericity of the particles affects the jet shape. Jets forming in beds of large spherical
particles are characterized by a larger jet angle.



Figure 2: MRI images of jets forming at a single orifice distributor: (a,b) jets forming in
a small (L = 46.8 mm) and wide bed (L = 72.0 mm) containing large particles (dp = 1.3
mm) and applying an orifice velocity of ∼ 63 m/s; (c,d) jets forming in a bed containing
Iceland poppy seeds (dp = 0.7 mm) (e) plot of the jet height in a bed of opium poppy
seeds as a function of orifice velocity.
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Figure 3: MRI measurements of jets forming at multi-orifice distributors. The fluidizing
gas was introduced via two (a,b), one (c) or three orifices (d,e). Fig. 3(a) shows the
bending of the tips of at an orifice velocity of Uo = 17.8 m/s, whereas very little jet
interaction can be observed at an orifice velocity of Uo = 8.4 m/s (Fig. 3(b)) in a bed
of Iceland poppy seeds. Fig. 3(c) shows a jet forming at a two-orifice distributor when
one orifice was blocked (opium poppy seeds and Uo = 17.8 m/s.) Jets forming at a
three-orifice distributor (Fig. 3 d,e) using opium poppy seeds (dp = 0.9 mm), and an
average orifice velocity of (d) Uo = 33.0 m/s and (e) Uo = 35.3 m/s



Figure 4: Methods applied to induce jet and spout transitions

Jet spout transition

Fig. 3(d,e) shows jets forming at a distributor plate containing three orifices. In this
configuration, a mixture of jets and spouts can be observed. The jets are roughly half
as high as the bed height. As shown in Fig. 3(d,e) it was possible to transform jets into
spouts and vice versa. Based on our observations, the use of non-spherical particles
is a requirement to allow this mechanically induced jet-spout transition. Furthermore,
the the orifice velocity has to be in the range in which both jets and spouts can form, c.f.
hysteresis loop. Three methods have been applied successfully to induce a jet-spout
or spout-jet transition (Fig. 4)

a) Oscillation of the entire bed perpendicular to the flow direction. This induces a
particle motion “unbalancing” the spout structure and, thus, results in a jet. The
oscillation had approximately amplitude of 30 mm and a frequency of 2 hertz.

b) Penetration of the bed with a cylinder with a diameter similar to that of the spout.
The cylinder was then moved horizontally through the upper section of the void
and jet covering particles and subsequently slowly removed vertically from the
bed.

c) Tilting of the beds. this results in a bed height that varied along the width of the
bed. Thus, the pressure drop is reduced at the “lifted” side resulting in the for-
mation of a spout at the orifice covered by a bed of comparatively small height.
The used tilt angel was approximately 20 degree.

CONCLUSIONS

Magnetic Resonance Imaging (MRI) was used to image non-intrusively jets and spouts
forming at single and multi-orifice distributors. It was found that jets in beds that con-
tained larger particles are wider than jets forming in beds containing smaller particles.
Additionally, narrow beds led to higher jets and the fluidization history critically affected



the jet height. With regard to multiple jets, jet-jet interaction is indicated by the tips of
jets tips towards each other and a local variation of jet height. We also observed that
it is possible to introduce a jet-spout transition by mechanically disturbing the bed.

NOMENCLATURE

dp particle diameter [mm]
do diameter [mm] based on equivalent orifice area
L side length of the square distributor [mm]
Lo side length of the square orifice [mm]
Uo orifice fluidization velocity [m/s]
Ums minimum spouting velocity [m/s]
Usf spout formation velocity [m/s]
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