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ABSTRACT 

The present work proposes the use of the so-called “moving mean control charts” 
for the continuous monitoring of the fluidized bed. A rotating distributor was used as 
a counteracting measurement against the defluidization phenomena. The results 
showed the utility of the proposed strategy to identify the defluidization and 
recuperation processes. 

INTRODUCTION 

Bubbling fluidized beds are used for a wide variety of industrial processes, such as 
the chemical, food, and pharmaceutical industries. For any process, it is desirable to 
be able to specify the level at which it is operating, and therefore, it is customary for 
the implementation of a monitoring and control system that can ensure the operation 
at a certain level of performance. All these operations require the measurement of 
the fluidization state and the possibility to modify the operational conditions to exert 
the control of the process. The development of online control strategies using 
pressure fluctuation signals is still incipient, due to noisy pressure time series, which 
are difficult to monitor (1). Statistical process control (SPC) methods have been 
widely used in industry processes for fault detection (2). Such a strategy is based on 
the data representation in control charts, which are used to analyze the variability of 
processes, helping to find the causes of changes and monitor performance.  

The present work proposes a methodology to design the control scheme for a 
general fluidized bed process. Such a control strategy approach is based on the 
implementation and use of the moving mean control charts for the pressure 
fluctuations measured in the plenum chamber. Therefore, the control strategy 
results should identify the out of the control state and will help in the identification of 
the uncontrolled states causes. To that end, the proposed control strategy is 
designed according to the SPC principles, and the obtained control charts are 
analyzed for the defluidization of the bed caused by the agglomeration formation. A 
rotating distributor will be used as a counteracting measurement against this 
defluidization phenomenon. 

EXPERIMENTAL SETUP 

The experiments were carried out in a lab-scale cylindrical Bubbling Fluidized Bed 
(BFB), equipped with an electrical motor in order to produce a rotation of the 
distributor. The cylindrical vessel has an inner diameter, D, of 0.192 m, and a height 
of 1 m. The packed bed height, hb, is fixed to a value of 0.75·D. The rotating 
distributor was a perforated plate with an open area of 3% and the holes were laid 
out in a triangular mesh with a pitch of 11 mm. During the experiments, it can be 
discriminated between the rotational distributor case, with an angular velocity of 100 
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rpm, and the static distributor case, without any rotation. A schematic of the setup is 
shown in Fig. 1. The bed material was silica sand particles, classified as Group B 
according to Geldart’s classification (3). The particle density was measured to be 
2,645.5 kg/m3 with a standard deviation of 2.5 kg/m3, and a mean diameter of 683 
µm. 

 

Fig. 1: Schematic diagram of the experimental fluidized bed. 

The measurement system consists of one pressure probe with 4 mm of internal 
diameter and a length of 0.10 m. These dimensions guarantee an undisturbed 
transfer of the pressure signal and a reliable measurement (4-5). Piezoelectric 
pressure sensors, Kistler type 7261, were connected to the probes to measure the 
differential pressure fluctuations. The measurements from the Kistler 5015 sensors 
were amplified using a Kistler amplifier type 50515. The signal was stored in a PC 
using a National Instruments data acquisition system type 9234 working at a 
sampling frequency of 400 Hz. 

METHODOLOGY 

During the tests the relative fluidization velocity was set to a value of U/Umf = 1.6, 
and the fluidized bed was operated at a constant inlet temperature of 30º C. These 
settings will be referred to as nominal conditions and will define the steady state 
operation of the lab-scale fluidized bed. The experiments were carried out for 
shallow beds with hb/D = 0.75. The minimum fluidization velocity was measured to 
be Umf,s = 0.33 m/s and Umf,r = 0.31 m/s for the static and rotating distributor 
respectively (6). 

All the experiments started with the fluidized bed operating at nominal conditions, 
with no rotation of the distributor and no agglomerates present. The agglomerates 
were formed due to the punctual injection of water. To start the agglomeration 
process, 150 ml of water were instantaneously injected using a test tube to spill the 
water on the surface of the bed from 1 m over the distributor and perpendicular to it. 
After the defluidization of the bed, the water injection was stopped and the rotating 



distributor was switched on as a counteracting measure against the agglomeration 
of the bed, trying to recover the fluidization quality of the controlled state of the bed. 

METHODS OF ANALYSIS 

According to the basic strategy of control proposed in this work, the variables of 
control were obtained by analyzing the pressure fluctuations with linear methods. 
The analysis covered both the time and the frequency domains giving a complete 
outline of the fluidization behavior. 

Time domain analysis 

The standard deviation of the pressure signal was employed to analyze the behavior 
of the bed in the time domain. As stated by van Ommen et al. (7) the variation in the 
standard deviation can be used to identify the regime change and the defluidization 
of the bed, as can be seen in Fig. 2-a. 

The average cycle time, tav, was also calculated. This parameter can be defined as 
twice the total measurement time divided by the number of crossings with the 
average value (8). As expected, the average cycle time detects the transition 
between the defluidized and the fluidized regimes, Fig. 2-a. 

 

Fig. 2. Behavior of the control variables versus the air flow ratio. (a) Standard 

deviation and average cycle time. (b) Energy distributions. 

Frequency domain analysis 

The energy contained within the power spectrum of the pressure signal can be used 
as a variable to monitor the fluidization behavior (9). The ratio between the energy in 
a region and the total energy of the power spectrum is called wide band energy. In 
order to estimate properly the wide band energy it is necessary to divide the energy 
distribution into three regions within the frequency domain. Analyzing the cumulative 
energy distribution of the bed under nominal conditions, the frequency domain 

presents a first region, Ewb1, (f ≤ f ≤ 1.3 Hz) with less than 0.2% of the total energy 
(5). That frequency energy region is related to the bubble dynamics (9). The second 
region, Ewb2, contains the 90% of the energy of the signal and was defined from 1.3 
Hz to 4.5 Hz, in which the dominant frequencies are codified, representing the bulk 
movement of the bed (9). Finally, the third region, Ewb3, covered from 4.5 Hz to the 
Nyquist frequency (200 Hz) with almost the 10% of the energy. It identifies the finer 
structures that are not predominantly governed by the bulk movement of the flow. 



The increase of the air flow produced a clear change on all energy distributions, Fig. 
2-b. 

RESULTS AND DISCUSSION 

The results show the application of the proposed methodology to the fluidized bed 
control. First the fluidized bed was studied at nominal conditions with a static 
distributor for 30 minutes. Once the control chart was designed, several tests of 
agglomeration were carried out to see the dynamic response of the control charts. 

Implementation of the moving mean chart 

In the basic design of a moving mean control chart, the sample size of the moving 
window (Wt) used to draw the control charts must be specified. The length of the 
sample size is restricted by two limits. The first limit is referred to the minimum size 
of the moving window, which is related to the dynamic of the fluidized bed. 
According to Wilkinson (10), a time length of Wt = 25 seconds can be considered a 
reasonable minimum time length to satisfy the objective of a reliable measurement 
for the standard deviation. 

The second limit is related to the statistical basis of the moving mean control charts. 
In general, when the subgroup size is increased, the control limits are closer to the 
mean value and, as a consequence, the detection of small variations outside of the 
thresholds is easier. However, a drawback of increasing the sample size (Wt) is the 
time lag in following any trend, because of the averaging effect produced by the 
increase of the number of points used to estimate the control variable. This 
averaging effect was studied comparing three different window lengths of 25, 50 and 
100 s. The time at which the control variables exceeded the control thresholds was 
analyzed when there was an abrupt change on the fluidization quality. That change 
was achieved through the punctual injection of 150 ml of water to the surface of the 
bed. As expected, the control variables presented an increase of around 10% to 
60% in the time needed to detect the leave of the control thresholds as the window 
length increases. Thus, the moving window size was fixed to the value of 25 s since 
it satisfies both limits, which were referred to the minimum size of the moving 
window or to the time lag of the moving mean control charts. 

A fundamental assumption in the development of the control chart is that the 
underlying distribution of the control variable is normal. However, it is necessary to 
check this hypothesis in order to estimate the correct control limits. The values of 
the kurtosis (k) and the skewness (s) for each variable, which are presented in Table 
1, are sligthly deviatied from the normal values of k = 3 and s = 0. Therefore, the 
underlying distributions of the controlled variables were searched applying the 
Kolmogorov-Smirnov test, Eq (1), to the normal, gamma and weibull distributions 
(11).  

)()(sup xFxFD xx       (1) 

 

Table 1. Kurtosis and skewness values for the variables histograms. 

 σ tav Ewb1 Ewb2 Ewb3 

Kurtosis (k) 2.64 2.72 3.41 3.59 3.53 

Skewness (s) -0.30 -0.29 0.50 -0.72 0.72 



The Figure 3 presents the evolution of the Kolmogorov-Smirnov test versus the 
signal length analyzed. The distribution is selected when this test reaches a 
minimum value. For the first 10 minutes, Fig. 3 showed that the experimental 
distribution can be adjusted to any theoretical distribution considered, since all the 
experimental histograms presented bell-shape distributions. In such a zone, the 
small number of points available for the distribution estimation make possible to fit 
the experimental values with any of the theoretical distributions considered. As the 
number of measurements increase, the theoretical distribution that fits the observed 
values is obtained. Therefore, there was a minimum time of the signal length at 
which the experimental distribution can be described only by one theoretical 
distribution. This time was fixed when the Kolmogorv-Smirnov statistic reached a 
constant trend (Fig. 3-a/c/e) or when it started a downward trend (Fig. 3-b/d). The 
normal distribution can describe the standard deviation and the average cycle time 
(Fig. 3-a/b), whereas the gamma distribution will describe the energy distributions of 
Regions I and III (Fig. 3-c/e). The energy of the Region II will be approximated by 
the weibull statistic (Fig.3-d). 

 

Fig. 3. Kolmogorov-Smirnov statistic as a function of the signal length. (a) Standard 
deviation. (b) Average cycle time. (c) Wide band energy I. (d) Wide band energy II. 

(e) Wide band energy III. 

SPC applied to agglomeration phenomena 

The results for the water injection are presented in Figs. 4 and 5, where the control 
strategy proposed was applied to the control variables for two types of recuperation, 
i) applying the rotating distributor when the bed is defluidized, and ii) ‘auto-
recuperation’ with the static distributor. The control thresholds were estimated using 
the statistical distributions obtained before. The upper and lower action lines (LAL 
and UAL) were estimated assuming the 0.001 probability of exceeds these limits in 
one direction, whereas the lower and upper warning limits (LWL and UWL) were 
estimated for the 0.025 probability. 



 

Fig. 4. Punctual injection of 150 ml of water, time domain analysis. (a) Standard 
deviation control chart. (b) Average cycle time control chart.  

 

Fig. 5. Wide band energy control charts for the punctual injection of 150 ml of water. 
(a) Region III, Ewb3. (b) Region II, Ewb2. (c) Region I, Ewb1. 



As it can be seen in Figs. 4 and 5, the control variables show a clear influence of the 
punctual water injection on the fluidization quality. During the first 4 minutes the bed 
was operated between the warning control limits until the water injection. In both 
tests, the agglomerates formation caused an abrupt decrease of the standard 
deviation, which fell from the control state to the out of the control state with a value 
below the lower action line (LAL) in around 15 s for all the variables (Figs. 4 and 5). 
The agglomerates tend to settle on top of the distributor near the injection zone 
causing the appearance of channels. Focusing on the static distributor test, these 
channels were detected by the high values of the energy distribution of Region III 
(Fig. 5-a). However, the energy of Region II, which represents the bulk movement of 
the bed, was out of the control state for 25 minutes showing that the bed was 
completely defluidized after the injection of water. Similar time is needed to recover 
the fluidization quality for the average cycle time (Fig. 4-b), and for the energy of 
Region III (Fig. 4-a). The energy of Region I was recovered 18 minutes after the 
punctual injection, showing that the bubbling pattern was recuperated before the 
other phenomenon. In contrast, the standard deviation was out of control for 35 
minutes. Such high recovery times can be explained since the agglomerate 
breakage was a slow phenomenon in the static distributor test because the drying 
mechanisms of the particles were controlled by the slow diffusion velocity of the 
water inside of the bed (12). 

In the second run the rotating distributor was started 1 minute after the water 
injection. This induced the breakage of the agglomerates placed on top of the 
distributor, since the dead zones between the holes of the distributor were broken 
improving the radial and axial mixing at the bottom of the bed (13). The breakage of 
the channels was immediately detected by the energy of the Region III (Fig. 5-a), 
whose energy was transferred to the low frequency region (Fig. 5-c) reaching values 
higher than the previous showed when the bed was not fluidized (Fig. 2). Once the 
agglomerates were eroded, the energy distributions recovered the control state at 
the same time 11 minutes after the start of the distributor motion. However, the 
average cycle time (Fig. 4-b) recovered the control state only 6 minutes after the 
starting of the distributor rotation, indicating the bubble eruption in the bed. It is 
worth to point out that, at that time (6 minutes after the start of the distributor 
motion), all the variables were near to the LAL threshold. The standard deviation 
(Fig. 4-a) presented some fluctuations around the LAL threshold pointing the 
variations produced in the fluidization behavior caused by the agglomerates 
breakage. In that case, the recuperation time was 16 minutes.  

CONCLUSIONS 

The proposed methodology shows its capability to detect the defluidization of the 
bed, the formation of the channels, and its latter disappearance by the drying effect 
of the air flow or by the breakage effect of the rotating distributor. It was shown that 
there was a minimum signal length needed to statistically describe these control 
variables. 
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NOTATION 



Symbols  Subscripts 

hb fixed bed heigth m 1,2 ,3 frequency regions 

D 
Kolmogorov-Srminov 
statistic 

- mf  minimum fluidization 

Ewb wide band energy - r rotating distributor 

k kurtosis - s static distributor 

s skewness - Abbreviations 

tav average cycle time s BFB bubbling fluidized bed 

U superficial velocity m/s LAL lower action line 

Wt window length s LWL lower warning line 

  SPC statistical process control 

Greek letters UAL upper action line 

σ standard deviation Pa UWL upper warning line 
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