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ABSTRACT 

In heterogeneous gas-solid flows, meso-scale structures (such as bubbles and 
clusters) significantly affect the hydrodynamics as well as mass/heat transfer and 
reaction rate. To be consistent with these structures, we tried to formulate a set 
of conservation equations with consideration of structures, namely the structure-
dependent multi-fluid (SFM) model based on the EMMS (energy-minimization 
multi-scale) (1) method. It was found that our previous works (2-5) on the 
coupling of TFM and EMMS drag can be viewed as a simplified solution of SFM 
with stability condition. 

1. INTRODUCTION 

Gas-solid fluidization is normally aggregative, featuring dynamic structures over a 
broad range of spatio-temporal scales. These structures (such as bubbles and 
clusters) have significant impacts on the flow, mass/heat transfer and reaction 
rate, and hence have attracted many researchers using computational fluid 
dynamics (CFD) to investigate those effects. Direct numerical simulation (DNS) 
as well as various kinds of discrete particle methods may allow detailed analysis 
of these structures, however, they are normally unaffordable to industrial 
application due to the limited computing resources. The two-fluid model (TFM) is 
more suitable for industrial applications, where the flows of the gas and the solids 
are statistically averaged and assumed as interpenetrating continua (6). The so-
called coarse-grained TFM does not reflect the structural effects within each grid 
and, therefore, is difficult to capture the experimental behavior (7). Here, we try to 
establish a set of structure-dependent conservation equations, on which the 
energy-minimization multi-scale (EMMS) drag can be naturally incorporated, as 
practiced in our previous works (2-5). 

2. MODEL FORMULATION 

For heterogeneous gas-solid flows from the bubbling to fast fluidization, there 
exists a bimodal probability distribution over the entire range of solids 
concentration distribution, one apex corresponding to the particle-rich dense 
phase and the other to the gas-rich dilute phase (1,8). Thus, it is reasonable to 
reduce heterogeneous structures into dilute-dense two-phase description. 
Bearing in mind this two-phase simplification, we may derive a structure-
dependent multi-fluid model (SFM) as follows: 

2.1 Structure-dependent multi-fluid model 



To be consistent with the two-phase structure, the monodisperse gas-solid riser 
flow is classified into the dense clusters (denoted by subscript c) and the dilute 
broth (denoted by subscript f) according to the structural characterization in the 
EMMS model, as shown in Fig. 1. The dense clusters are surrounded and 
dispersed by the continuous dilute phase. Further we refine such broth-cluster 
structure by defining four continua of structural sub-elements, namely the dense-
phase gas, the dense-phase solid, the dilute-phase gas and the dilute-phase 
solid (denoted by gc, sc, gf and sf, respectively). 

If the dilute and dense phases are homogeneous inside, the gas-solid drag per 
unit volume of the dilute/dense phase (Fdf/Fdc) can be closed with the classical 
drag coefficient, such as Wen and Yu correlation (9). Since the dilute-phase gas 
surrounds the dense-phase particles, there exists an additional drag (Fdi). The 
interactions of the gas (solids) between the dilute and dense phases due to 
transient evolution of clusters are taken into account by the mass exchange 
terms (Γg, Γs). For brevity, other interaction forces (such as the lift force, the 
virtual mass force), and chemical reactions are not included in this work. 

 

Fig. 1 The schematic diagram of modeling for heterogeneous gas-solid flows (10) 

Following the Eulerian spatial averaging method, we can derive the conservation 
equations for four continua as follows: 

Continuity equation for the dense-phase gas: 

 ( ) ( )gc g gc g gc gf f Γ
t
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Continuity equation for the dense-phase solid: 
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Continuity equation for the dilute-phase gas: 
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Continuity equation for the dilute-phase solid: 
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Momentum conservation equation for the dense-phase gas: 
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Momentum conservation equation for the dense-phase solid: 
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Momentum conservation equation for the dilute-phase gas: 
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Momentum conservation equation for the dilute-phase solid: 
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It should be noted that the above momentum equations are written in forms of the 
hydrodynamic model B (6) where the gas pressure gradient only acts on the gas 

phase. The stress tensor (k) takes the Newtonian form as 
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ui is the interface gas/solid velocity between the dilute and dense phases. In 
principle, this set of governing equations (Eqs. 1-8) could be solved to obtain the 
independent variables (i.e., p, f, εgf, εgc, ugf, ugc, usf, usc), provided that the 

parameters (i.e., sf, sc, psf, psc, Гg, Гs, Fdf, Fdc, Fdi) be closed elaborately. Direct 
solution of such set of SFM equations is harder than TFM. Thus, we tried to 
reduce the current SFM into available TFM with structure-dependent closures. 



2.2 Restoration to the EMMS model 

2.2.1 Mass balance 

Combining the mass balance equations for the gas and the solids, we can derive 
the mass balance for the gas: 

 (1 )g gc gff f  U U U
,
 (10) 

and for the solids: 

 (1 )s sc sff f  U U U
.
 (11) 

2.2.2 Force balance  

For a lumped description of a steady-state reactor, the dominant factors of the 
force balance are the drag force, gravity and the buoyancy due to the pressure 
drop, while other terms such as the accelerations, stresses and the inter-phase 
mass exchange can be ignored. Thus, the force balance equations in SFM can 
be simplified into the following forms. 

Force balance for the dense-phase solid: 

 ( )dc di sc s gf f      F F g
.
 (12) 

Force balance for the dilute-phase solid: 

 ( )df sf s g    F g
.
 (13) 

Force balance for the dense-phase gas: 

 
dc gf f p f    F g

.
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Force balance for the dilute-phase gas: 

 (1 ) (1 ) (1 )df di gf f p f        F F g
.
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Eliminating the gas pressure gradient from Eqs. (14) and (15) yields the pressure 
drop balance between the dilute and dense phases: 

 
1
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Eqs. (10-13) and (16) exactly revert to the EMMS model. If we include the inertial 
terms to account for the dynamic change within each grid, we can derive the set 



of equations of the unsteady state EMMS model. Recent exploration on the 
meso-scale structure reveals that, both bubble and cluster based EMMS models 
(2,5) can be unified under the umbrella of a generalized SFM, which can be used 
for simulating both bubbling and circulating fluidized beds with fair agreement 
with experimental data (11). 

2.3 Reduction to TFM+EMMS 

Combining the corresponding mass/momentum equations in SFM for gas and 
solids, we get the following mass/momentum equations similar to TFM. 

Mass conservation for the gas: 
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Mass conservation for the solids: 
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Momentum conservation for the gas: 
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Momentum conservation for the solids: 
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where  
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,
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and  
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The effective drag coefficient (βBe) can be written as follows: 
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which exactly reverts to our definition in previous multiscale CFD approaches, 
which feature a combination of TFM equations and EMMS drag. The structural 

stress (e), the diffusion stress (D) and the structural pressure (pse) are the same 
as in Hong et al. (10). In particular, the closure of Fdi is the most critical part, 
which may differ with the characterization of meso-scale structures in terms of e.g. 
bubble or cluster. More details should be referred to Hong et al. (11). 

Compared with the type-B model of TFM, the reduced SFM differs in its 
formulation of the stress, drag force and diffusion stress by including the 
structural effects. If the flow is homogeneous within each grid, the traditional TFM 
can be viewed as a specific case of SFM. 

3. SIMPLIFIED SOLUTION OF SFM: MULTI-SCALE CFD 

As mentioned above, the TFM and EMMS model can be unified under the 
umbrella of a more generalized, stability-constrained SFM. And our previous 
works (2-5) on Multi-scale CFD can be viewed as a simplified solution of SFM. 

 

Fig. 2 Comparison of axial solids concentration for (a): bubbling (ID 0.267 m, 
2.464 m high; ρp = 1780 kg/m3, dp =65 μm, εmf = 0.4) and (b): circulating fluidized 
beds (ID 0.09m, 10.5 m high; ρp = 930 kg/m3, dp =54 μm, εmf = 0.4). Both cases 

are fluidized with ambient air. 

For example, to verify the bubble-based EMMS model recently developed by 
Hong et al. (11), we present the comparison of axial profiles of solids 
concentration with experimental data for two simulation cases. Simulations were 
first performed for 20 seconds of physical time, and then the time-averaged 
analysis was carried out over the remaining 10 seconds. Fig. 2(a) and 2(b) are 
based on bubbling fluidized bed with Ug=0.2 m/s (12) and fast fluidized bed with 



Ug=1.52 m/s and Gs=14.3 kg/(m2s) (1), respectively. The simulation results of 
bubbling bed are in reasonable agreement with experimental data. For the case 
of circulating fluidized bed, deviation exists at the bottom part of the riser, which 
may be caused by 2D simplification of the inlet region or improper estimation of 
the initial solids inventory. Further analysis is still needed with regard to this issue. 
The solids mass flow rate of CFB is monitored at the outlet of riser and the 
entrained particles are recirculated into the solid inlet. The predicted value of 
solids flux is about 15.31~16.77 kg/(m2s) which agrees with experimental value 
(14.3 kg/(m2s)), with standard deviation of about 5.30~5.74 kg/(m2s). In general, 
we found that the SFM with bubble-based EMMS closure is suitable for flow 
regimes from bubbling to fast fluidization. 

4. CONCLUSION 

To be consistent with the dilute-dense two-phase structure, a structure-
dependent multi-fluid model was proposed, and then simplified and compared 
with the traditional TFM and the EMMS models. It was found that the SFM may 
reduce to the TFM with structure-dependent closures and the hydrodynamics 
equations of the EMMS model. In other words, the SFM unifies the TFM and the 
hydrodynamics equations of the EMMS model with different structural 
characterization. Simulations of a bubbling- and a circulating- fluidized beds are 
compared with experimental data, showing applicable to wide flow regimes. 
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NOTATION 

f volume fraction of dense phase 
F drag force, N/m3 
g gravitational acceleration, m/s2 
Gs solids flux, kg/(m2s) 
p pressure, Pa 
u velocity, m/s 
U superficial velocity, m/s 
 
Greek letters 

β  drag coefficient, kg/(m3s) 

Г mass exchange, kg/(m3s) 
ε volume fraction 
I unit tensor 

λ  bulk viscosity, Pa·s 

μ  viscosity, Pa·s 

ρ  density, kg/m3 

 stress tensor, Pa 
 
Subscripts 



c dense phase 
f dilute phase 
g gas phase 
i meso-scale interphase 
mf minimum fluidization 
p particles 
s solid phase 
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